CAIE FP1 2002 November — Question 10

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2002
SessionNovember
Topic3x3 Matrices

10 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { H }\), where $$\mathbf { H } = \left( \begin{array} { r r r r } 1 & 2 & - 3 & - 5
- 1 & 4 & 5 & 1
2 & 3 & 0 & - 3
- 3 & 5 & 7 & 2 \end{array} \right)$$
  1. Find the dimension of the range space of T .
  2. Find a basis for the null space of \(T\).
  3. It is given that \(\mathbf { x }\) satisfies the equation $$\mathbf { H } \mathbf { x } = \left( \begin{array} { r } 2
    - 10
    - 1
    - 15 \end{array} \right)$$ Using the fact that $$\mathbf { H } \left( \begin{array} { r } 1
    - 3
    1
    - 2 \end{array} \right) = \left( \begin{array} { r } 2
    - 10
    - 1
    - 15 \end{array} \right) ,$$ find the least possible value of \(| \mathbf { x } |\).
    [0pt] [For the vector \(\mathbf { x } = \left( \begin{array} { c } x _ { 1 }
    x _ { 2 }
    x _ { 3 }
    x _ { 4 } \end{array} \right) , | \mathbf { x } | = \sqrt { } \left( x _ { 1 } ^ { 2 } + x _ { 2 } ^ { 2 } + x _ { 3 } ^ { 2 } + x _ { 4 } ^ { 2 } \right)\).]