Questions FP1 (1385 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI FP1 2015 June Q5
Moderate -0.3
5
  1. Show that \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } ( 2 \mathrm { r } - 1 ) = \mathrm { n } ^ { 2 }\).
  2. Show that \(\frac { \sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } ( 2 \mathrm { r } - 1 ) } { \sum _ { \mathrm { r } = \mathrm { n } + 1 } ^ { 2 \mathrm { n } } ( 2 \mathrm { r } - 1 ) } = \mathrm { k }\), where \(k\) is a constant to be determined.
OCR MEI FP1 2015 June Q6
Standard +0.3
6 A sequence is defined by \(u _ { 1 } = 3\) and \(u _ { n + 1 } = 3 u _ { n } - 5\). Prove by induction that \(u _ { n } = \frac { 3 ^ { n - 1 } + 5 } { 2 }\). Section B (36 marks)
OCR MEI FP1 2015 June Q7
Standard +0.8
7 A curve has equation \(\mathrm { y } = \frac { ( 3 \mathrm { x } + 2 ) ( \mathrm { x } - 3 ) } { ( \mathrm { x } - 2 ) ( \mathrm { x } + 1 ) }\).
  1. Write down the equations of the three asymptotes and the coordinates of the points where the curve crosses the axes.
  2. Sketch the curve, justifying how it approaches the horizontal asymptote.
  3. Find the set of values of \(x\) for which \(y \geqslant 3\).
OCR MEI FP1 2015 June Q8
Standard +0.3
8 The complex number \(5 + 4 \mathrm { j }\) is denoted by \(\alpha\).
  1. Find \(\alpha ^ { 2 }\) and \(\alpha ^ { 3 }\), showing your working.
  2. The real numbers \(q\) and \(r\) are such that \(\alpha ^ { 3 } + \mathrm { q } \alpha ^ { 2 } + 11 \alpha + \mathrm { r } = 0\). Find \(q\) and \(r\). Let \(\mathrm { f } ( \mathrm { z } ) = \mathrm { z } ^ { 3 } + \mathrm { qz } ^ { 2 } + 11 \mathrm { z } + \mathrm { r }\), where \(q\) and \(r\) are as in part (ii).
  3. Solve the equation \(\mathrm { f } ( z ) = 0\).
  4. Solve the equation \(z ^ { 4 } + q z ^ { 3 } + 11 z ^ { 2 } + r z = z ^ { 3 } + q z ^ { 2 } + 11 z + r\).
OCR MEI FP1 2015 June Q9
Moderate -0.3
9 The triangle ABC has vertices at \(\mathrm { A } ( 0,0 ) , \mathrm { B } ( 0,2 )\) and \(\mathrm { C } ( 4,1 )\). The matrix \(\left( \begin{array} { r r } 1 & - 2 \\ 3 & 0 \end{array} \right)\) represents a transformation T .
  1. The transformation \(T\) maps triangle \(A B C\) onto triangle \(A ^ { \prime } B ^ { \prime } C ^ { \prime }\). Find the coordinates of \(A ^ { \prime } , B ^ { \prime }\) and \(C ^ { \prime }\). Triangle \(A ^ { \prime } B ^ { \prime } C ^ { \prime }\) is now mapped onto triangle \(A ^ { \prime \prime } B ^ { \prime \prime } C ^ { \prime \prime }\) using the matrix \(\mathbf { M } = \left( \begin{array} { l l } 4 & 0 \\ 0 & 2 \end{array} \right)\).
  2. Describe fully the transformation represented by \(\mathbf { M }\).
  3. Triangle \(\mathrm { A } ^ { \prime \prime } \mathrm { B } ^ { \prime \prime } \mathrm { C } ^ { \prime \prime }\) is now mapped back onto ABC by a single transformation. Find the matrix representing this transformation.
  4. Calculate the area of \(A ^ { \prime \prime } B ^ { \prime \prime } C ^ { \prime \prime }\).
OCR MEI FP1 2016 June Q1
Moderate -0.3
1 The matrix \(\mathbf { M }\) is given by \(\mathbf { M } = \left( \begin{array} { c c } 8 & - 2 \\ p & 1 \end{array} \right)\), where \(p \neq - 4\).
  1. Find the inverse of \(\mathbf { M }\) in terms of \(p\).
  2. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{578345cb-e7a1-41fd-abf8-a977912965e8-2_1086_885_584_587} \captionsetup{labelformat=empty} \caption{Fig. 1}
    \end{figure} The triangle shown in Fig. 1 undergoes the transformation represented by the matrix \(\left( \begin{array} { c c } 8 & - 2 \\ 3 & 1 \end{array} \right)\). Find the area of the image of the triangle following this transformation.
OCR MEI FP1 2016 June Q2
Standard +0.3
2 The complex number \(z _ { 1 }\) is \(2 - 5 \mathrm { j }\) and the complex number \(z _ { 2 }\) is \(( a - 1 ) + ( 2 - b ) \mathrm { j }\), where \(a\) and \(b\) are real.
  1. Express \(\frac { z _ { 1 } { } ^ { * } } { z _ { 1 } }\) in the form \(x + y \mathrm { j }\), giving \(x\) and \(y\) in exact form. You must show clearly how you obtain your
    answer.
  2. Given that \(\frac { z _ { 1 } { } ^ { * } } { z _ { 1 } } = z _ { 2 }\), find the exact values of \(a\) and \(b\).
OCR MEI FP1 2016 June Q3
Standard +0.3
3 You are given that \(\mathbf { A } = \left( \begin{array} { c c c } \lambda & 6 & - 4 \\ 2 & 5 & - 1 \\ - 1 & 4 & 3 \end{array} \right) , \mathbf { B } = \left( \begin{array} { c c c } - 19 & 34 & - 14 \\ 5 & - 5 & 5 \\ - 13 & 18 & - 3 \end{array} \right)\) and \(\mathbf { A B } = \mu \mathbf { I }\), where \(\mathbf { I }\) is the \(3 \times 3\) identity
matrix.
  1. Find the values of \(\lambda\) and \(\mu\).
  2. Hence find \(\mathbf { B } ^ { - 1 }\).
OCR MEI FP1 2016 June Q4
Standard +0.3
4
  1. Use standard series to show that $$\sum _ { r = 1 } ^ { n } r ^ { 2 } ( 2 r - p ) = \frac { 1 } { 6 } n ( n + 1 ) \left( 3 n ^ { 2 } + ( 3 - 2 p ) n - p \right) ,$$ where \(p\) is a constant.
  2. Given that the coefficients of \(n ^ { 3 }\) and \(n ^ { 4 }\) in the expression for \(\sum _ { r = 1 } ^ { n } r ^ { 2 } ( 2 r - p )\) are equal, find the value of \(p\).
OCR MEI FP1 2016 June Q5
Standard +0.3
5 The loci \(C _ { 1 }\) and \(C _ { 2 }\) are given by \(| z + 3 - 4 \mathrm { j } | = 5\) and arg \(( z + 3 - 6 \mathrm { j } ) = \frac { 1 } { 2 } \pi\) respectively.
  1. Sketch, on a single Argand diagram, the loci \(C _ { 1 }\) and \(C _ { 2 }\).
  2. Write down the complex number represented by the point of intersection of \(C _ { 1 }\) and \(C _ { 2 }\).
  3. Indicate, by shading on your sketch, the region satisfying $$| z + 3 - 4 \mathrm { j } | \geqslant 5 \text { and } \frac { 1 } { 2 } \pi \leqslant \arg ( z + 3 - 6 \mathrm { j } ) \leqslant \frac { 3 } { 4 } \pi .$$
OCR MEI FP1 2016 June Q6
Standard +0.8
6 A sequence is defined by \(u _ { 1 } = 8\) and \(u _ { n + 1 } = 3 u _ { n } + 2 n + 5\). Prove by induction that \(u _ { n } = 4 \left( 3 ^ { n } \right) - n - 3\).
OCR MEI FP1 2016 June Q7
Standard +0.8
7 The function \(\mathrm { f } ( z ) = 2 z ^ { 4 } - 9 z ^ { 3 } + A z ^ { 2 } + B z - 26\) has real coefficients. The equation \(\mathrm { f } ( z ) = 0\) has two real roots, \(\alpha\) and \(\beta\), where \(\alpha > \beta\), and two complex roots, \(\gamma\) and \(\delta\), where \(\gamma = 3 + 2 \mathrm { j }\).
  1. Show that \(\alpha + \beta = - \frac { 3 } { 2 }\) and find the value of \(\alpha \beta\).
  2. Hence find the two real roots \(\alpha\) and \(\beta\).
  3. Find the values of \(A\) and \(B\).
  4. Write down the roots of the equation \(\mathrm { f } \left( \frac { w } { \mathrm { j } } \right) = 0\).
OCR MEI FP1 2016 June Q8
Standard +0.8
8 A curve has equation \(y = \frac { 3 x ^ { 2 } - 9 } { x ^ { 2 } + 3 x - 4 }\).
  1. Find the equations of the two vertical asymptotes and the one horizontal asymptote of this curve.
  2. State, with justification, how the curve approaches the horizontal asymptote for large positive and large negative values of \(x\).
  3. Sketch the curve.
  4. Solve the inequality \(\frac { 3 x ^ { 2 } - 9 } { x ^ { 2 } + 3 x - 4 } \geqslant 0\).
OCR MEI FP1 2016 June Q9
Challenging +1.2
9 You are given that \(\frac { 3 } { 4 ( 2 r - 1 ) } - \frac { 1 } { 2 r + 1 } + \frac { 1 } { 4 ( 2 r + 3 ) } = \frac { 2 r + 5 } { ( 2 r - 1 ) ( 2 r + 1 ) ( 2 r + 3 ) }\).
  1. Use the method of differences to show that $$\sum _ { r = 1 } ^ { n } \frac { 2 r + 5 } { ( 2 r - 1 ) ( 2 r + 1 ) ( 2 r + 3 ) } = \frac { 2 } { 3 } - \frac { 3 } { 4 ( 2 n + 1 ) } + \frac { 1 } { 4 ( 2 n + 3 ) } .$$
  2. Write down the limit to which \(\sum _ { r = 1 } ^ { n } \frac { 2 r + 5 } { ( 2 r - 1 ) ( 2 r + 1 ) ( 2 r + 3 ) }\) converges as \(n\) tends to infinity.
  3. Find the sum of the finite series $$\frac { 45 } { 39 \times 41 \times 43 } + \frac { 47 } { 41 \times 43 \times 45 } + \frac { 49 } { 43 \times 45 \times 47 } + \ldots + \frac { 105 } { 99 \times 101 \times 103 } ,$$ giving your answer to 3 significant figures. \section*{END OF QUESTION PAPER}
CAIE FP1 2008 June Q1
Standard +0.8
1 The finite region enclosed by the line \(y = k x\), where \(k\) is a positive constant, the \(x\)-axis for \(0 \leqslant x \leqslant h\), and the line \(x = h\) is rotated through 1 complete revolution about the \(x\)-axis. Prove by integration that the centroid of the resulting cone is at a distance \(\frac { 3 } { 4 } h\) from the origin \(O\).
[0pt] [The volume of a cone of height \(h\) and base radius \(r\) is \(\frac { 1 } { 3 } \pi r ^ { 2 } h\).]
CAIE FP1 2008 June Q2
Standard +0.8
2 Given that $$u _ { n } = \ln \left( \frac { 1 + x ^ { n + 1 } } { 1 + x ^ { n } } \right)$$ where \(x > - 1\), find \(\sum _ { n = 1 } ^ { N } u _ { n }\) in terms of \(N\) and \(x\). Find the sum to infinity of the series $$u _ { 1 } + u _ { 2 } + u _ { 3 } + \ldots$$ when
  1. \(- 1 < x < 1\),
  2. \(x = 1\).
CAIE FP1 2008 June Q3
Challenging +1.2
3 Show that if \(\lambda\) is an eigenvalue of the square matrix \(\mathbf { A }\) with \(\mathbf { e }\) as a corresponding eigenvector, and \(\mu\) is an eigenvalue of the square matrix \(\mathbf { B }\) for which \(\mathbf { e }\) is also a corresponding eigenvector, then \(\lambda + \mu\) is an eigenvalue of the matrix \(\mathbf { A } + \mathbf { B }\) with \(\mathbf { e }\) as a corresponding eigenvector. The matrix $$\mathbf { A } = \left( \begin{array} { r r r } 3 & - 1 & 0 \\ - 4 & - 6 & - 6 \\ 5 & 11 & 10 \end{array} \right)$$ has \(\left( \begin{array} { r } 1 \\ - 1 \\ 1 \end{array} \right)\) as an eigenvector. Find the corresponding eigenvalue. The other two eigenvalues of \(\mathbf { A }\) are 1 and 2, with corresponding eigenvectors \(\left( \begin{array} { r } 1 \\ 2 \\ - 3 \end{array} \right)\) and \(\left( \begin{array} { r } 1 \\ 1 \\ - 2 \end{array} \right)\) respectively. The matrix \(\mathbf { B }\) has eigenvalues \(2,3,1\) with corresponding eigenvectors \(\left( \begin{array} { r } 1 \\ - 1 \\ 1 \end{array} \right) , \left( \begin{array} { r } 1 \\ 2 \\ - 3 \end{array} \right)\), \(\left( \begin{array} { r } 1 \\ 1 \\ - 2 \end{array} \right)\) respectively. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(( \mathbf { A } + \mathbf { B } ) ^ { 4 } = \mathbf { P D P } \mathbf { P } ^ { - 1 }\).
[0pt] [You are not required to evaluate \(\mathbf { P } ^ { - 1 }\).]
CAIE FP1 2008 June Q4
Standard +0.3
4 The curves \(C _ { 1 }\) and \(C _ { 2 }\) have polar equations $$r = \theta + 2 \quad \text { and } \quad r = \theta ^ { 2 }$$ respectively, where \(0 \leqslant \theta \leqslant \pi\).
  1. Find the polar coordinates of the point of intersection of \(C _ { 1 }\) and \(C _ { 2 }\).
  2. Sketch \(C _ { 1 }\) and \(C _ { 2 }\) on the same diagram.
  3. Find the area bounded by \(C _ { 1 } , C _ { 2 }\) and the line \(\theta = 0\).
CAIE FP1 2008 June Q5
Challenging +1.2
5 The equation $$x ^ { 3 } + x - 1 = 0$$ has roots \(\alpha , \beta , \gamma\). Show that the equation with roots \(\alpha ^ { 3 } , \beta ^ { 3 } , \gamma ^ { 3 }\) is $$y ^ { 3 } - 3 y ^ { 2 } + 4 y - 1 = 0$$ Hence find the value of \(\alpha ^ { 6 } + \beta ^ { 6 } + \gamma ^ { 6 }\).
CAIE FP1 2008 June Q6
Challenging +1.2
6 The curve \(C\) is defined parametrically by $$x = 4 t - t ^ { 2 } \quad \text { and } \quad y = 1 - \mathrm { e } ^ { - t }$$ where \(0 \leqslant t < 2\). Show that at all points of \(C\), $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \frac { ( t - 1 ) \mathrm { e } ^ { - t } } { 4 ( 2 - t ) ^ { 3 } }$$ Show that the mean value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) with respect to \(x\) over the interval \(0 \leqslant x \leqslant \frac { 7 } { 4 }\) is $$\frac { 4 e ^ { - \frac { 1 } { 2 } } - 3 } { 21 }$$
CAIE FP1 2008 June Q7
Standard +0.8
7 Prove by induction that $$\sum _ { r = 1 } ^ { n } \left( 3 r ^ { 5 } + r ^ { 3 } \right) = \frac { 1 } { 2 } n ^ { 3 } ( n + 1 ) ^ { 3 }$$ for all \(n \geqslant 1\). Use this result together with the List of Formulae (MF10) to prove that $$\sum _ { r = 1 } ^ { n } r ^ { 5 } = \frac { 1 } { 12 } n ^ { 2 } ( n + 1 ) ^ { 2 } \mathrm { Q } ( n )$$ where \(\mathrm { Q } ( n )\) is a quadratic function of \(n\) which is to be determined.
CAIE FP1 2008 June Q8
Challenging +1.8
8
  1. Given that $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } t ^ { n } \sin t \mathrm {~d} t$$ show that, for \(n \geqslant 2\), $$I _ { n } = n \left( \frac { \pi } { 2 } \right) ^ { n - 1 } - n ( n - 1 ) I _ { n - 2 } .$$
  2. A curve \(C\) in the \(x - y\) plane is defined parametrically in terms of \(t\). It is given that $$\frac { \mathrm { d } x } { \mathrm {~d} t } = t ^ { 4 } ( 1 - \cos 2 t ) \quad \text { and } \quad \frac { \mathrm { d } y } { \mathrm {~d} t } = t ^ { 4 } \sin 2 t .$$ Find the length of the arc of \(C\) from the point where \(t = 0\) to the point where \(t = \frac { 1 } { 2 } \pi\).
CAIE FP1 2008 June Q9
Standard +0.8
9 The curve \(C\) has equation $$y = \frac { x ^ { 2 } - 2 x + \lambda } { x + 1 }$$ where \(\lambda\) is a constant. Show that the equations of the asymptotes of \(C\) are independent of \(\lambda\). Find the value of \(\lambda\) for which the \(x\)-axis is a tangent to \(C\), and sketch \(C\) in this case. Sketch \(C\) in the case \(\lambda = - 4\), giving the exact coordinates of the points of intersection of \(C\) with the \(x\)-axis.
CAIE FP1 2008 June Q10
Challenging +1.8
10 By considering \(\sum _ { n = 1 } ^ { N } z ^ { 2 n - 1 }\), where \(z = \mathrm { e } ^ { \mathrm { i } \theta }\), show that $$\sum _ { n = 1 } ^ { N } \cos ( 2 n - 1 ) \theta = \frac { \sin ( 2 N \theta ) } { 2 \sin \theta }$$ where \(\sin \theta \neq 0\). Deduce that $$\sum _ { n = 1 } ^ { N } ( 2 n - 1 ) \sin \left[ \frac { ( 2 n - 1 ) \pi } { N } \right] = - N \operatorname { cosec } \frac { \pi } { N }$$
CAIE FP1 2008 June Q11
Challenging +1.3
11 Show that, with a suitable value of the constant \(\alpha\), the substitution \(y = x ^ { \alpha } w\) reduces the differential equation $$2 x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + \left( 3 x ^ { 2 } + 8 x \right) \frac { \mathrm { d } y } { \mathrm {~d} x } + \left( x ^ { 2 } + 6 x + 4 \right) y = \mathrm { f } ( x )$$ to $$2 \frac { \mathrm {~d} ^ { 2 } w } { \mathrm {~d} x ^ { 2 } } + 3 \frac { \mathrm {~d} w } { \mathrm {~d} x } + w = \mathrm { f } ( x )$$ Find the general solution for \(y\) in the case where \(\mathrm { f } ( x ) = 6 \sin 2 x + 7 \cos 2 x\).