1 The matrix \(\mathbf { M }\) is given by \(\mathbf { M } = \left( \begin{array} { c c } 8 & - 2
p & 1 \end{array} \right)\), where \(p \neq - 4\).
- Find the inverse of \(\mathbf { M }\) in terms of \(p\).
- \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{578345cb-e7a1-41fd-abf8-a977912965e8-2_1086_885_584_587}
\captionsetup{labelformat=empty}
\caption{Fig. 1}
\end{figure}
The triangle shown in Fig. 1 undergoes the transformation represented by the matrix \(\left( \begin{array} { c c } 8 & - 2
3 & 1 \end{array} \right)\). Find the area of the image of the triangle following this transformation.