| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2008 |
| Session | June |
| Topic | Proof by induction |
7 Prove by induction that
$$\sum _ { r = 1 } ^ { n } \left( 3 r ^ { 5 } + r ^ { 3 } \right) = \frac { 1 } { 2 } n ^ { 3 } ( n + 1 ) ^ { 3 }$$
for all \(n \geqslant 1\).
Use this result together with the List of Formulae (MF10) to prove that
$$\sum _ { r = 1 } ^ { n } r ^ { 5 } = \frac { 1 } { 12 } n ^ { 2 } ( n + 1 ) ^ { 2 } \mathrm { Q } ( n )$$
where \(\mathrm { Q } ( n )\) is a quadratic function of \(n\) which is to be determined.