CAIE FP1 2008 June — Question 7

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2008
SessionJune
TopicProof by induction

7 Prove by induction that $$\sum _ { r = 1 } ^ { n } \left( 3 r ^ { 5 } + r ^ { 3 } \right) = \frac { 1 } { 2 } n ^ { 3 } ( n + 1 ) ^ { 3 }$$ for all \(n \geqslant 1\). Use this result together with the List of Formulae (MF10) to prove that $$\sum _ { r = 1 } ^ { n } r ^ { 5 } = \frac { 1 } { 12 } n ^ { 2 } ( n + 1 ) ^ { 2 } \mathrm { Q } ( n )$$ where \(\mathrm { Q } ( n )\) is a quadratic function of \(n\) which is to be determined.