8 The complex number \(5 + 4 \mathrm { j }\) is denoted by \(\alpha\).
- Find \(\alpha ^ { 2 }\) and \(\alpha ^ { 3 }\), showing your working.
- The real numbers \(q\) and \(r\) are such that \(\alpha ^ { 3 } + \mathrm { q } \alpha ^ { 2 } + 11 \alpha + \mathrm { r } = 0\). Find \(q\) and \(r\).
Let \(\mathrm { f } ( \mathrm { z } ) = \mathrm { z } ^ { 3 } + \mathrm { qz } ^ { 2 } + 11 \mathrm { z } + \mathrm { r }\), where \(q\) and \(r\) are as in part (ii).
- Solve the equation \(\mathrm { f } ( z ) = 0\).
- Solve the equation \(z ^ { 4 } + q z ^ { 3 } + 11 z ^ { 2 } + r z = z ^ { 3 } + q z ^ { 2 } + 11 z + r\).