OCR MEI FP1 2015 June — Question 8

Exam BoardOCR MEI
ModuleFP1 (Further Pure Mathematics 1)
Year2015
SessionJune
TopicComplex Numbers Arithmetic
TypeMultiplication and powers of complex numbers

8 The complex number \(5 + 4 \mathrm { j }\) is denoted by \(\alpha\).
  1. Find \(\alpha ^ { 2 }\) and \(\alpha ^ { 3 }\), showing your working.
  2. The real numbers \(q\) and \(r\) are such that \(\alpha ^ { 3 } + \mathrm { q } \alpha ^ { 2 } + 11 \alpha + \mathrm { r } = 0\). Find \(q\) and \(r\). Let \(\mathrm { f } ( \mathrm { z } ) = \mathrm { z } ^ { 3 } + \mathrm { qz } ^ { 2 } + 11 \mathrm { z } + \mathrm { r }\), where \(q\) and \(r\) are as in part (ii).
  3. Solve the equation \(\mathrm { f } ( z ) = 0\).
  4. Solve the equation \(z ^ { 4 } + q z ^ { 3 } + 11 z ^ { 2 } + r z = z ^ { 3 } + q z ^ { 2 } + 11 z + r\).