| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2008 |
| Session | June |
| Topic | Parametric equations |
6 The curve \(C\) is defined parametrically by
$$x = 4 t - t ^ { 2 } \quad \text { and } \quad y = 1 - \mathrm { e } ^ { - t }$$
where \(0 \leqslant t < 2\). Show that at all points of \(C\),
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \frac { ( t - 1 ) \mathrm { e } ^ { - t } } { 4 ( 2 - t ) ^ { 3 } }$$
Show that the mean value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) with respect to \(x\) over the interval \(0 \leqslant x \leqslant \frac { 7 } { 4 }\) is
$$\frac { 4 e ^ { - \frac { 1 } { 2 } } - 3 } { 21 }$$