| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2008 |
| Session | June |
| Topic | Second order differential equations |
11 Show that, with a suitable value of the constant \(\alpha\), the substitution \(y = x ^ { \alpha } w\) reduces the differential equation
$$2 x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + \left( 3 x ^ { 2 } + 8 x \right) \frac { \mathrm { d } y } { \mathrm {~d} x } + \left( x ^ { 2 } + 6 x + 4 \right) y = \mathrm { f } ( x )$$
to
$$2 \frac { \mathrm {~d} ^ { 2 } w } { \mathrm {~d} x ^ { 2 } } + 3 \frac { \mathrm {~d} w } { \mathrm {~d} x } + w = \mathrm { f } ( x )$$
Find the general solution for \(y\) in the case where \(\mathrm { f } ( x ) = 6 \sin 2 x + 7 \cos 2 x\).