5 The loci \(C _ { 1 }\) and \(C _ { 2 }\) are given by \(| z + 3 - 4 \mathrm { j } | = 5\) and arg \(( z + 3 - 6 \mathrm { j } ) = \frac { 1 } { 2 } \pi\) respectively.
- Sketch, on a single Argand diagram, the loci \(C _ { 1 }\) and \(C _ { 2 }\).
- Write down the complex number represented by the point of intersection of \(C _ { 1 }\) and \(C _ { 2 }\).
- Indicate, by shading on your sketch, the region satisfying
$$| z + 3 - 4 \mathrm { j } | \geqslant 5 \text { and } \frac { 1 } { 2 } \pi \leqslant \arg ( z + 3 - 6 \mathrm { j } ) \leqslant \frac { 3 } { 4 } \pi .$$