A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Proof by induction
Q5
OCR MEI FP1 2015 June — Question 5
Exam Board
OCR MEI
Module
FP1 (Further Pure Mathematics 1)
Year
2015
Session
June
Topic
Proof by induction
5
Show that \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } ( 2 \mathrm { r } - 1 ) = \mathrm { n } ^ { 2 }\).
Show that \(\frac { \sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } ( 2 \mathrm { r } - 1 ) } { \sum _ { \mathrm { r } = \mathrm { n } + 1 } ^ { 2 \mathrm { n } } ( 2 \mathrm { r } - 1 ) } = \mathrm { k }\), where \(k\) is a constant to be determined.
This paper
(9 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9