| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2008 |
| Session | June |
| Topic | Invariant lines and eigenvalues and vectors |
3 Show that if \(\lambda\) is an eigenvalue of the square matrix \(\mathbf { A }\) with \(\mathbf { e }\) as a corresponding eigenvector, and \(\mu\) is an eigenvalue of the square matrix \(\mathbf { B }\) for which \(\mathbf { e }\) is also a corresponding eigenvector, then \(\lambda + \mu\) is an eigenvalue of the matrix \(\mathbf { A } + \mathbf { B }\) with \(\mathbf { e }\) as a corresponding eigenvector.
The matrix
$$\mathbf { A } = \left( \begin{array} { r r r }
3 & - 1 & 0
- 4 & - 6 & - 6
5 & 11 & 10
\end{array} \right)$$
has \(\left( \begin{array} { r } 1
- 1
1 \end{array} \right)\) as an eigenvector. Find the corresponding eigenvalue.
The other two eigenvalues of \(\mathbf { A }\) are 1 and 2, with corresponding eigenvectors \(\left( \begin{array} { r } 1
2
- 3 \end{array} \right)\) and \(\left( \begin{array} { r } 1
1
- 2 \end{array} \right)\) respectively. The matrix \(\mathbf { B }\) has eigenvalues \(2,3,1\) with corresponding eigenvectors \(\left( \begin{array} { r } 1
- 1
1 \end{array} \right) , \left( \begin{array} { r } 1
2
- 3 \end{array} \right)\), \(\left( \begin{array} { r } 1
1
- 2 \end{array} \right)\) respectively. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(( \mathbf { A } + \mathbf { B } ) ^ { 4 } = \mathbf { P D P } \mathbf { P } ^ { - 1 }\).
[0pt]
[You are not required to evaluate \(\mathbf { P } ^ { - 1 }\).]