Questions C4 (1162 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C4 Q6
Standard +0.3
6 Given that \(\operatorname { cosec } ^ { 2 } \theta - \cot \theta = 3\), show that \(\cot ^ { 2 } \theta - \cot \theta - 2 = 0\).
Hence solve the equation \(\operatorname { cosec } ^ { 2 } \theta - \cot \theta = 3\) for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
OCR MEI C4 Q7
Easy -1.2
7 Given that \(x = 2 \sec \theta\) and \(y = 3 \tan \theta\), show that \(\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 9 } = 1\).
OCR MEI C4 Q8
Moderate -0.8
8 Solve the equation $$\sec ^ { 2 } \theta = 4 , \quad 0 \leqslant \theta \leqslant \pi ,$$ giving your answers in terms of \(\pi\).
OCR MEI C4 Q1
Standard +0.3
1 Solve the equation \(2 \sec ^ { 2 } \theta = 5 \tan \theta\), for \(0 \leqslant \theta \leqslant \pi\).
OCR MEI C4 Q2
Moderate -0.3
2 Solve, correct to 2 decimal places, the equation \(\cot 2 \theta = 3\) for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
OCR MEI C4 Q3
Challenging +1.2
3 Fig. 8 shows a searchlight, mounted at a point A, 5 metres above level ground. Its beam is in the shape of a cone with axis AC , where C is on the ground. AC is angled at \(\alpha\) to the vertical. The beam produces an oval-shaped area of light on the ground, of length DE . The width of the oval at C is GF . Angles DAC, EAC, FAC and GAC are all \(\beta\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f5ab2a9d-3366-4b9b-86b0-85d5d923953c-2_695_877_503_242} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure} \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f5ab2a9d-3366-4b9b-86b0-85d5d923953c-2_333_799_505_1048} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure} In the following, all lengths are in metres.
  1. Find AC in terms of \(\alpha\), and hence show that \(\mathrm { GF } = 10 \sec \alpha \tan \beta\).
  2. Show that \(\mathrm { CE } = 5 ( \tan ( \alpha + \beta ) - \tan \alpha )\). $$\text { Hence show that } \mathrm { CE } = \frac { 5 \tan \beta \sec ^ { 2 } \alpha } { 1 - \tan \alpha \tan \beta } \text {. }$$ Similarly, it can be shown that \(\mathrm { CD } = \frac { 5 \tan \beta \sec ^ { 2 } \alpha } { 1 + \tan \alpha \tan \beta }\). [You are not required to derive this result.]
    You are now given that \(\alpha = 45 ^ { \circ }\) and that \(\tan \beta = t\).
  3. Find CE and CD in terms of \(t\). Hence show that \(\mathrm { DE } = \frac { 20 t } { 1 - t ^ { 2 } }\).
  4. Show that \(\mathrm { GF } = 10 \sqrt { 2 } t\). For a certain value of \(\beta , \mathrm { DE } = 2 \mathrm { GF }\).
  5. Show that \(t ^ { 2 } = 1 - \frac { 1 } { \sqrt { 2 } }\). Hence find this value of \(\beta\).
OCR MEI C4 Q4
Standard +0.3
4 Show that \(\cot 2 \theta = \frac { 1 - \tan ^ { 2 } \theta } { 2 \tan \theta }\).
Hence solve the equation $$\cot 2 \theta = 1 + \tan \theta \quad \text { for } 0 ^ { \circ } < \theta < 360 ^ { \circ } .$$
OCR MEI C4 Q5
Standard +0.3
5 Prove that \(\cot \beta - \cot \alpha = \frac { \sin ( \alpha - \beta ) } { \sin \alpha \sin \beta }\).
OCR MEI C4 Q2
Standard +0.3
2 In Fig. 6, \(\mathrm { ABC } , \mathrm { ACD }\) and AED are right-angled triangles and \(\mathrm { BC } = 1\) unit. Angles CAB and CAD are \(\theta\) and \(\phi\) respectively. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c8ea5913-c527-40e7-bfcc-c1c2df544e04-2_452_535_437_781} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Find AC and AD in terms of \(\theta\) and \(\phi\).
  2. Hence show that \(\mathrm { DE } = 1 + \frac { \tan \phi } { \tan \theta }\).
OCR MEI C4 Q3
5 marks Standard +0.3
3 Verify that the vector \(\mathbf { d } - \mathbf { j } + 4 \mathbf { k }\) is perpendicular to the plane through the points \(\mathrm { A } ( 2,0,1 ) , \mathrm { B } ( 1,2,2 )\) and \(\mathrm { C } ( 0 , - 4,1 )\). Hence find the cartesian equation of the plane. [5]
OCR MEI C4 Q4
Standard +0.3
4 Show that the straight lines with equations \(\mathbf { r } = \begin{array} { r r r } 2 & + \lambda & 0 \\ 4 & & 1 \end{array}\) and \(\mathbf { r } = \quad + \mu \quad\) meet.
Find their point of intersection.
OCR MEI C4 Q5
Standard +0.3
5 The points A , B and C have coordinates \(( 2,0 , - 1 ) , ( 4,3 , - 6 )\) and \(( 9,3 , - 4 )\) respectively.
  1. Show that AB is perpendicular to BC .
  2. Find the area of triangle ABC .
OCR MEI C4 Q6
Moderate -0.5
6
  1. Verify that the lines \(\left. \mathbf { r } = \begin{array} { r } - 5 \\ 3 \\ 4 \end{array} \right) + \lambda \left( \begin{array} { r } 3 \\ 0 \\ - 1 \end{array} \right)\) and \(\left. \left. \mathbf { r } = \begin{array} { r } - 1 \\ 4 \\ 2 \end{array} \right) + \mu - \begin{array} { r } 2 \\ - 1 \\ 0 \end{array} \right)\) meet at the point ( \(1,3,2\) ).
  2. Find the acute angle between the lines.
OCR MEI C4 Q1
Standard +0.3
1 A glass ornament OABCDEFG is a truncated pyramid on a rectangular base (see Fig. 7). All dimensions are in centimetres. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7a52b6ce-a0cc-421d-8eae-3b6cf098e381-1_625_1109_416_522} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Write down the vectors \(\overrightarrow { \mathrm { CD } }\) and \(\overrightarrow { \mathrm { CB } }\).
  2. Find the length of the edge CD.
  3. Show that the vector \(4 \mathbf { i } + \mathbf { k }\) is perpendicular to the vectors \(\overrightarrow { \mathrm { CD } }\) and \(\overrightarrow { \mathrm { CB } }\). Hence find the cartesian equation of the plane BCDE.
  4. Write down vector equations for the lines OG and AF . Show that they meet at the point P with coordinates (5, 10, 40). You may assume that the lines CD and BE also meet at the point P .
    The volume of a pyramid is \(\frac { 1 } { 3 } \times\) area of base × height.
  5. Find the volumes of the pyramids POABC and PDEFG . Hence find the volume of the ornament.
OCR MEI C4 Q2
Standard +0.3
2 In a game of rugby, a kick is to be taken from a point P (see Fig. 7). P is a perpendicular distance \(y\) metres from the line TOA. Other distances and angles are as shown. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7a52b6ce-a0cc-421d-8eae-3b6cf098e381-2_511_630_449_750} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Show that \(\theta = \beta - \alpha\), and hence that \(\tan \theta = \frac { 6 y } { 160 + y ^ { 2 } }\). Calculate the angle \(\theta\) when \(y = 6\).
  2. By differentiating implicitly, show that \(\frac { \mathrm { d } \theta } { \mathrm { d } y } = \frac { 6 \left( 160 - y ^ { 2 } \right) } { \left( 160 + y ^ { 2 } \right) ^ { 2 } } \cos ^ { 2 } \theta\).
  3. Use this result to find the value of \(y\) that maximises the angle \(\theta\). Calculate this maximum value of \(\theta\). [You need not verify that this value is indeed a maximum.]
OCR MEI C4 Q3
Standard +0.3
3 Fig. 6 shows a lean-to greenhouse ABCDHEFG . With respect to coordinate axes Oxyz , the coordinates of the vertices are as shown. All distances are in metres. Ground level is the plane \(z = 0\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7a52b6ce-a0cc-421d-8eae-3b6cf098e381-3_796_1296_354_418} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Verify that the equation of the plane through \(\mathrm { A } , \mathrm { B }\) and E is \(x + 6 y + 12 = 0\). Hence, given that F lies in this plane, show that \(a = - 2 \frac { 1 } { 3 }\).
  2. (A) Show that the vector \(\left( \begin{array} { r } 1 \\ - 6 \\ 0 \end{array} \right)\) is normal to the plane DHC.
    (B) Hence find the cartesian equation of this plane.
    (C) Given that G lies in the plane DHC , find \(b\) and the length FG .
  3. Find the angle EFB . A straight wire joins point H to a point P which is half way between E and \(\mathrm { F } . \mathrm { Q }\) is a point two-thirds of the way along this wire, so that \(\mathrm { HQ } = 2 \mathrm { QP }\).
  4. Find the height of Q above the ground.
OCR MEI C4 Q4
Standard +0.3
4 A computer-controlled machine can be programmed to make ats by entering the equation of the plane of the cut, and to drill holes by entering the equation of the line of the hole. A \(20 \mathrm {~cm} \times 30 \mathrm {~cm} \times 30 \mathrm {~cm}\) cuboid is to be at and drilled. The cuboid is positioned relative to \(x\)-, \(y ^ { 2 }\) and z-axes as shown in Fig. 8.1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7a52b6ce-a0cc-421d-8eae-3b6cf098e381-4_416_702_463_322} \captionsetup{labelformat=empty} \caption{Fig.8.1}
\end{figure} \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7a52b6ce-a0cc-421d-8eae-3b6cf098e381-4_420_683_459_1044} \captionsetup{labelformat=empty} \caption{Fig. 8.2}
\end{figure} Fkst, a plane out is made to remove the comer at \(E\). The cut goes through the points \(P . Q\) and \(R\), which are the midpoints of the sides \(\mathrm { ED } , \mathrm { EA }\) and EF respectively.
  1. Write down the coordinates of \(\mathbf { P } , \mathbf { Q }\) and \(\mathbf { R }\). $$\text { Henceshowlhat } \mathbb { N } ^ { 1 } \left\{ \begin{array} { l } 1 \\ 0 \\ 0 \end{array} \right\} \text { and } \left\{ \begin{array} { l } 1 \\ 0 \end{array} \right\}$$ (;) Show that the veeto, \(\binom { \text { I } } { \text { ) } }\) is pc,pcndicula, to the plone through \(\mathrm { P } , \mathrm { Q }\), nd R
    Hence find the Cartesian equation of this plane. A hole is then drilled perpendicular to lriangle \(P Q R\), as shown in Fig. 82. The hole passes through the triangle at the point \(T\) which divides the line \(P S\) in the ratio 2 : \(I\), where \(S\) is the midpoint of \(Q R\).
  2. Write down the coordinates of S , and show that the point T has coordinates \(( - 5,16,25 )\).
  3. Write down a vector equation of the line of the drill hole. Hence determine whether or not this line passes through C .
OCR MEI C4 Q1
Standard +0.8
1 Fig. 6 shows a lean-to greenhouse ABCDHEFG . With respect to coordinate axes \(\mathrm { O } x y z\), the coordinates of the vertices are as shown. All distances are in metres. Ground level is the plane \(z = 0\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{27c27c79-9aea-45a4-a000-41aac70ff866-1_798_1296_354_418} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Verify that the equation of the plane through \(\mathrm { A } , \mathrm { B }\) and E is \(x + 6 y + 12 = 0\). Hence, given that F lies in this plane, show that \(a = - 2 \frac { 1 } { 3 }\).
  2. (A) Show that the vector \(\left( \begin{array} { r } 1 \\ - 6 \\ 0 \end{array} \right)\) is normal to the plane DHC.
    (B) Hence find the cartesian equation of this plane.
    (C) Given that G lies in the plane DHC , find \(b\) and the length FG .
  3. Find the angle EFB . A straight wire joins point H to a point P which is half way between E and \(\mathrm { F } . \mathrm { Q }\) is a point two-thirds of the way along this wire, so that \(\mathrm { HQ } = 2 \mathrm { QP }\).
  4. Find the height of Q above the ground.
OCR MEI C4 Q2
Standard +0.3
2 Fig. 7 shows a tetrahedron ABCD . The coordinates of the vertices, with respect to axes Oxyz , are \(\mathrm { A } ( - 3,0,0 ) , \mathrm { B } ( 2,0 , - 2 ) , \mathrm { C } ( 0,4,0 )\) and \(\mathrm { D } ( 0,4,5 )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{27c27c79-9aea-45a4-a000-41aac70ff866-2_805_854_385_615} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Find the length of the edges AB and AC , and the size of the angle CAB . Hence calculate the area of triangle ABC .
  2. (A) Verify that \(4 \mathbf { i } - 3 \mathbf { j } + 10 \mathbf { k }\) is normal to the plane ABC .
    (B) Hence find the equation of this plane.
  3. Write down a vector equation for the line through D perpendicular to the plane ABC . Hence find the point of intersection of this line with the plane ABC . The volume of a tetrahedron is \(\frac { 1 } { 3 } \times\) area of base × height.
  4. Find the volume of the tetrahedron ABCD .
  5. Find a vector equation of the line \(l\) joining the points \(( 0,1,3 )\) and \(( - 2,2,5 )\).
  6. Find the point of intersection of the line \(l\) with the plane \(x + 3 y + 2 z = 4\).
  7. Find the acute angle between the line \(l\) and the normal to the plane.
OCR MEI C4 Q1
Challenging +1.2
1 With respect to cartesian coordinates Oxyz, a laser beam ABC is fired from the point \(\mathrm { A } ( 1,2,4 )\), and is reflected at point B off the plane with equation \(x + 2 y - 3 z = 0\), as shown in Fig. 8. \(\mathrm { A } ^ { \prime }\) is the point \(( 2,4,1 )\), and \(M\) is the midpoint of \(\mathrm { AA } ^ { \prime }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b46db958-aa88-47fb-8db3-786472791577-1_562_716_464_650} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Show that \(\mathrm { AA } ^ { \prime }\) is perpendicular to the plane \(x + 2 y - 3 z = 0\), and that M lies in the plane. The vector equation of the line AB is \(\mathbf { r } = \left( \begin{array} { l } 1 \\ 2 \\ 4 \end{array} \right) + \lambda \left( \begin{array} { r } 1 \\ - 1 \\ 2 \end{array} \right)\).
  2. Find the coordinates of B , and a vector equation of the line \(\mathrm { A } ^ { \prime } \mathrm { B }\).
  3. Given that \(\mathrm { A } ^ { \prime } \mathrm { BC }\) is a straight line, find the angle \(\theta\).
  4. Find the coordinates of the point where BC crosses the Oxz plane (the plane containing the \(x\) - and \(z\)-axes)
OCR MEI C4 Q2
Standard +0.3
2 A piece of cloth ABDC is attached to the tops of vertical poles \(\mathrm { AE } , \mathrm { BF } , \mathrm { DG }\) and CH , where \(\mathrm { E } , \mathrm { F } , \mathrm { G }\) and H are at ground level (see Fig. 7). Coordinates are as shown, with lengths in metres. The length of pole DG is \(k\) metres. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b46db958-aa88-47fb-8db3-786472791577-2_916_1255_464_397} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Write down the vectors \(\overrightarrow { \mathrm { AB } }\) and \(\overrightarrow { \mathrm { AC } }\). Hence calculate the angle BAC .
  2. Verify that the equation of the plane ABC is \(x + y - 2 z + d = 0\), where \(d\) is a constant to be determined. Calculate the acute angle the plane makes with the horizontal plane.
  3. Given that \(\mathrm { A } , \mathrm { B } , \mathrm { D }\) and C are coplanar, show that \(k = 3\). Hence show that ABDC is a trapezium, and find the ratio of CD to AB .
OCR MEI C4 Q3
9 marks Standard +0.3
3 A straight pipeline AB passes through a mountain. With respect to axes \(\mathrm { O } x y z\), with \(\mathrm { O } x\) due East, Oy due North and \(\mathrm { O } z\) vertically upwards, A has coordinates \(( - 200,100,0 )\) and B has coordinates \(( 100,200,100 )\), where units are metres.
  1. Verify that \(\left. \overrightarrow { \mathrm { AB } } = \begin{array} { l } 300 \\ 100 \\ 100 \end{array} \right)\) and find the length of the pipeline.
    [0pt] [3]
  2. Write down a vector equation of the line AB , and calculate the angle it makes with the vertical.
    [0pt] [6]
    A thin flat layer of hard rock runs through the mountain. The equation of the plane containing this layer is \(x + 2 y + 3 z = 320\).
  3. Find the coordinates of the point where the pipeline meets the layer of rock.
  4. By calculating the angle between the line AB and the normal to the plane of the layer, find the angle at which the pipeline cuts through the layer.
OCR MEI C4 Q4
Standard +0.3
4 When a light ray passes from air to glass, it is deflected through an angle. The light ray ABC starts at point \(\mathrm { A } ( 1,2,2 )\), and enters a glass object at point \(\mathrm { B } ( 0,0,2 )\). The surface of the glass object is a plane with normal vector \(\mathbf { n }\). Fig. 7 shows a cross-section of the glass object in the plane of the light ray and \(\mathbf { n }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b46db958-aa88-47fb-8db3-786472791577-4_689_812_341_662} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Find the vector \(\overrightarrow { \mathrm { AB } }\) and a vector equation of the line AB . The surface of the glass object is a plane with equation \(x + z = 2\). AB makes an acute angle \(\theta\) with the normal to this plane.
  2. Write down the normal vector \(\mathbf { n }\), and hence calculate \(\theta\), giving your answer in degrees. The line BC has vector equation \(\mathbf { r } = \left( \begin{array} { l } 0 \\ 0 \\ 2 \end{array} \right) + \mu \left( \begin{array} { l } - 2 \\ - 2 \\ - 1 \end{array} \right)\). This line makes an acute angle \(\phi\) with the
    normal to the plane. normal to the plane.
  3. Show that \(\phi = 45 ^ { \circ }\).
  4. Snell's Law states that \(\sin \theta = k \sin \phi\), where \(k\) is a constant called the refractive index. Find \(k\). The light ray leaves the glass object through a plane with equation \(x + z = - 1\). Units are centimetres.
  5. Find the point of intersection of the line BC with the plane \(x + z = - 1\). Hence find the distance the light ray travels through the glass object.
OCR MEI C4 Q1
Standard +0.3
1 The upper and lower surfaces of a coal seam are modelled as planes ABC and DEF, as shown in Fig. 8. All dimensions are metres. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{253ddd65-d92b-46ce-bf17-b4f6e3d32ec0-1_1014_1407_424_406} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure} Relative to axes \(\mathrm { O } x\) (due east), \(\mathrm { O } y\) (due north) and \(\mathrm { O } z\) (vertically upwards), the coordinates of the points are as follows.
A: (0, 0, -15)
B: (100, 0, -30)
C: ( \(0,100 , - 25\) )
D: (0, 0, -40)
E: (100, 0, -50)
F: (0, 100, -35)
  1. Verify that the cartesian equation of the plane ABC is \(3 x + 2 y + 20 z + 300 = 0\).
  2. Find the vectors \(\overrightarrow { \mathrm { DE } }\) and \(\overrightarrow { \mathrm { DF } }\). Show that the vector \(2 \mathbf { i } - \mathbf { j } + 20 \mathbf { k }\) is perpendicular to each of these vectors. Hence find the cartesian equation of the plane DEF .
  3. By calculating the angle between their normal vectors, find the angle between the planes ABC and DEF. It is decided to drill down to the seam from a point \(\mathrm { R } ( 15,34,0 )\) in a line perpendicular to the upper surface of the seam. This line meets the plane ABC at the point S .
  4. Write down a vector equation of the line RS.
OCR MEI C4 Q3
Moderate -0.3
3 Verify that the point \(( - 1,6,5 )\) lies on both the lines $$\mathbf { r } = \left( \begin{array} { l } 1 \\ 2 \\ 1 \end{array} \right) + \lambda \left( \begin{array} { l } 1 \\ 2 \\ 3 \end{array} \right) \quad \text { and } \quad \mathbf { r } = \left( \begin{array} { l } 0 \\ 6 \\ 3 \end{array} \right) + \mu \left( \begin{array} { l } 1 \\ 0 \\ 2 \end{array} \right)$$ Find the acute angle between the lines.