OCR MEI C4 — Question 1

Exam BoardOCR MEI
ModuleC4 (Core Mathematics 4)
TopicVectors 3D & Lines

1 A glass ornament OABCDEFG is a truncated pyramid on a rectangular base (see Fig. 7). All dimensions are in centimetres. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7a52b6ce-a0cc-421d-8eae-3b6cf098e381-1_625_1109_416_522} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Write down the vectors \(\overrightarrow { \mathrm { CD } }\) and \(\overrightarrow { \mathrm { CB } }\).
  2. Find the length of the edge CD.
  3. Show that the vector \(4 \mathbf { i } + \mathbf { k }\) is perpendicular to the vectors \(\overrightarrow { \mathrm { CD } }\) and \(\overrightarrow { \mathrm { CB } }\). Hence find the cartesian equation of the plane BCDE.
  4. Write down vector equations for the lines OG and AF . Show that they meet at the point P with coordinates (5, 10, 40). You may assume that the lines CD and BE also meet at the point P .
    The volume of a pyramid is \(\frac { 1 } { 3 } \times\) area of base × height.
  5. Find the volumes of the pyramids POABC and PDEFG . Hence find the volume of the ornament.