2 In Fig. 6, \(\mathrm { ABC } , \mathrm { ACD }\) and AED are right-angled triangles and \(\mathrm { BC } = 1\) unit. Angles CAB and CAD are \(\theta\) and \(\phi\) respectively.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c8ea5913-c527-40e7-bfcc-c1c2df544e04-2_452_535_437_781}
\captionsetup{labelformat=empty}
\caption{Fig. 6}
\end{figure}
- Find AC and AD in terms of \(\theta\) and \(\phi\).
- Hence show that \(\mathrm { DE } = 1 + \frac { \tan \phi } { \tan \theta }\).