Questions — CAIE FP1 (549 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2011 November Q2
2 Prove by mathematical induction that, for all positive integers \(n\), $$\frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( \frac { 1 } { 2 x + 3 } \right) = ( - 1 ) ^ { n } \frac { n ! 2 ^ { n } } { ( 2 x + 3 ) ^ { n + 1 } }$$
CAIE FP1 2011 November Q3
3 The equation $$x ^ { 3 } + 5 x ^ { 2 } - 3 x - 15 = 0$$ has roots \(\alpha , \beta , \gamma\). Find the value of \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 }\). Hence show that the matrix \(\left( \begin{array} { c c c } 1 & \alpha & \beta
\alpha & 1 & \gamma
\beta & \gamma & 1 \end{array} \right)\) is singular.
CAIE FP1 2011 November Q4
4 A curve has parametric equations $$x = 2 \sin 2 t , \quad y = 3 \cos 2 t$$ for \(0 < t < \frac { 1 } { 2 } \pi\). For the point on the curve where \(t = \frac { 1 } { 3 } \pi\), find the value of
  1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\),
  2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
CAIE FP1 2011 November Q5
5 Use de Moivre's theorem to express \(\cos ^ { 4 } \theta\) in the form $$a \cos 4 \theta + b \cos 2 \theta + c$$ where \(a , b , c\) are constants to be found. Hence evaluate $$\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \cos ^ { 4 } \theta d \theta$$ leaving your answer in terms of \(\pi\).
CAIE FP1 2011 November Q6
6 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 4 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 4 x = \sin 2 t$$ Describe the behaviour of \(x\) as \(t \rightarrow \infty\), justifying your answer.
CAIE FP1 2011 November Q7
7 Show that \(\frac { \mathrm { d } } { \mathrm { d } t } \left( t \left( 1 + t ^ { 3 } \right) ^ { n } \right) = ( 3 n + 1 ) \left( 1 + t ^ { 3 } \right) ^ { n } - 3 n \left( 1 + t ^ { 3 } \right) ^ { n - 1 }\). Let \(I _ { n } = \int _ { 0 } ^ { 1 } \left( 1 + t ^ { 3 } \right) ^ { n } \mathrm {~d} t\). Using the above result, or otherwise, show that $$( 3 n + 1 ) I _ { n } = 2 ^ { n } + 3 n I _ { n - 1 }$$ Hence evaluate \(I _ { 3 }\).
CAIE FP1 2011 November Q8
8 The curve \(C\) has polar equation \(r = 1 + \sin \theta\) for \(- \frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\). Draw a sketch of \(C\). The area of the region enclosed by the initial line, the half-line \(\theta = \frac { 1 } { 2 } \pi\), and the part of \(C\) for which \(\theta\) is positive, is denoted by \(A _ { 1 }\). The area of the region enclosed by the initial line, and the part of \(C\) for which \(\theta\) is negative, is denoted by \(A _ { 2 }\). Find the ratio \(A _ { 1 } : A _ { 2 }\), giving your answer correct to 1 decimal place.
CAIE FP1 2011 November Q9
9 Find a cartesian equation of the plane \(\Pi\) containing the lines $$\mathbf { r } = 3 \mathbf { i } + \mathbf { k } + s ( 2 \mathbf { i } + \mathbf { j } - \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 3 \mathbf { i } - 7 \mathbf { j } + 10 \mathbf { k } + t ( \mathbf { i } - 3 \mathbf { j } + 4 \mathbf { k } )$$ The line \(l\) passes through the point \(P\) with position vector \(6 \mathbf { i } - 2 \mathbf { j } + \mathbf { k }\) and is parallel to the vector \(2 \mathbf { i } + \mathbf { j } - 4 \mathbf { k }\). Find
  1. the position vector of the point where \(l\) meets \(\Pi\),
  2. the perpendicular distance from \(P\) to \(\Pi\),
  3. the acute angle between \(l\) and \(\Pi\).
CAIE FP1 2011 November Q10
10 A curve \(C\) has equation $$y = \frac { 5 \left( x ^ { 2 } - x - 2 \right) } { x ^ { 2 } + 5 x + 10 }$$ Find the coordinates of the points of intersection of \(C\) with the axes. Show that, for all real values of \(x , - 1 \leqslant y \leqslant 15\). Sketch \(C\), stating the coordinates of any turning points and the equation of the horizontal asymptote.
[0pt] [Question 11 is printed on the next page.]
CAIE FP1 2011 November Q11 EITHER
The curve \(C\) has equation \(y = \frac { 1 } { 3 } x ^ { \frac { 1 } { 2 } } ( 3 - x )\), for \(0 \leqslant x \leqslant 3\). Find the mean value of \(y\) with respect to \(x\) over the interval \(0 \leqslant x \leqslant 3\). Show that $$\frac { \mathrm { d } s } { \mathrm {~d} x } = \frac { 1 } { 2 } \left( x ^ { - \frac { 1 } { 2 } } + x ^ { \frac { 1 } { 2 } } \right)$$ where \(s\) denotes arc length, and find the arc length of \(C\). Find the area of the surface generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
CAIE FP1 2011 November Q11 OR
Find the eigenvalues and corresponding eigenvectors of the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r } 1 & 1 & 2
0 & 2 & 2
- 1 & 1 & 3 \end{array} \right)$$ The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 3 } \rightarrow \mathbb { R } ^ { 3 }\) is defined by \(\mathbf { x } \mapsto \mathbf { A x }\). Let \(\mathbf { e } , \mathbf { f }\) be two linearly independent eigenvectors of \(\mathbf { A }\), with corresponding eigenvalues \(\lambda\) and \(\mu\) respectively, and let \(\Pi\) be the plane, through the origin, containing \(\mathbf { e }\) and \(\mathbf { f }\). By considering the parametric equation of \(\Pi\), show that all points of \(\Pi\) are mapped by T onto points of \(\Pi\). Find cartesian equations of three planes, each with the property that all points of the plane are mapped by T onto points of the same plane.
CAIE FP1 2012 November Q1
1 Find the cartesian equation corresponding to the polar equation \(r = ( \sqrt { } 2 ) \sec \left( \theta - \frac { 1 } { 4 } \pi \right)\). Sketch the the graph of \(r = ( \sqrt { } 2 ) \sec \left( \theta - \frac { 1 } { 4 } \pi \right)\), for \(- \frac { 1 } { 4 } \pi < \theta < \frac { 3 } { 4 } \pi\), indicating clearly the polar coordinates of the intersection with the initial line.
CAIE FP1 2012 November Q2
2 The curve \(C\) has equation \(y = 2 x ^ { \frac { 1 } { 2 } }\) for \(0 \leqslant x \leqslant 4\). Find
  1. the mean value of \(y\) with respect to \(x\) for \(0 \leqslant x \leqslant 4\),
  2. the \(y\)-coordinate of the centroid of the region enclosed by \(C\), the line \(x = 4\) and the \(x\)-axis.
CAIE FP1 2012 November Q3
3 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 4 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 13 x = 26 t ^ { 2 } + 3 t + 13$$
CAIE FP1 2012 November Q4
4 Let \(\mathrm { f } ( r ) = r ( r + 1 ) ( r + 2 )\). Show that $$\mathrm { f } ( r ) - \mathrm { f } ( r - 1 ) = 3 r ( r + 1 )$$ Hence show that \(\sum _ { r = 1 } ^ { n } r ( r + 1 ) = \frac { 1 } { 3 } n ( n + 1 ) ( n + 2 )\). Using the standard result for \(\sum _ { r = 1 } ^ { n } r\), deduce that \(\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )\). Find the sum of the series $$1 ^ { 2 } + 2 \times 2 ^ { 2 } + 3 ^ { 2 } + 2 \times 4 ^ { 2 } + 5 ^ { 2 } + 2 \times 6 ^ { 2 } + \ldots + 2 ( n - 1 ) ^ { 2 } + n ^ { 2 }$$ where \(n\) is odd.
CAIE FP1 2012 November Q5
5 Let \(I _ { n }\) denote \(\int _ { 0 } ^ { \infty } x ^ { n } \mathrm { e } ^ { - 2 x } \mathrm {~d} x\). Show that \(I _ { n } = \frac { 1 } { 2 } n I _ { n - 1 }\), for \(n \geqslant 1\). Prove by mathematical induction that, for all positive integers \(n , I _ { n } = \frac { n ! } { 2 ^ { n + 1 } }\).
CAIE FP1 2012 November Q6
6 Use de Moivre's theorem to show that $$\cos 4 \theta = 8 \cos ^ { 4 } \theta - 8 \cos ^ { 2 } \theta + 1$$ Without using a calculator, verify that \(\cos 4 \theta = - \cos 3 \theta\) for each of the values \(\theta = \frac { 1 } { 7 } \pi , \frac { 3 } { 7 } \pi , \frac { 5 } { 7 } \pi , \pi\). Using the result \(\cos 3 \theta = 4 \cos ^ { 3 } \theta - 3 \cos \theta\), show that the roots of the equation $$8 c ^ { 4 } + 4 c ^ { 3 } - 8 c ^ { 2 } - 3 c + 1 = 0$$ are \(\cos \frac { 1 } { 7 } \pi , \cos \frac { 3 } { 7 } \pi , \cos \frac { 5 } { 7 } \pi , - 1\). Deduce that \(\cos \frac { 1 } { 7 } \pi + \cos \frac { 3 } { 7 } \pi + \cos \frac { 5 } { 7 } \pi = \frac { 1 } { 2 }\).
CAIE FP1 2012 November Q7
7 The curve \(C\) has equation $$y = \lambda x + \frac { x } { x - 2 }$$ where \(\lambda\) is a non-zero constant. Find the equations of the asymptotes of \(C\). Show that \(C\) has no turning points if \(\lambda < 0\). Sketch \(C\) in the case \(\lambda = - 1\), stating the coordinates of the intersections with the axes.
CAIE FP1 2012 November Q8
8 The curve \(C\) has parametric equations $$x = \frac { 1 } { 3 } t ^ { 3 } - \ln t , \quad y = \frac { 4 } { 3 } t ^ { \frac { 3 } { 2 } }$$ for \(1 \leqslant t \leqslant 3\). Find the arc length of \(C\). Find also the area of the surface generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
CAIE FP1 2012 November Q9
9 The plane \(\Pi\) has equation $$\mathbf { r } = 2 \mathbf { i } + 3 \mathbf { j } - \mathbf { k } + \lambda ( \mathbf { i } - 2 \mathbf { j } + 2 \mathbf { k } ) + \mu ( 3 \mathbf { i } + \mathbf { j } - 2 \mathbf { k } )$$ The line \(l\), which does not lie in \(\Pi\), has equation $$\mathbf { r } = 3 \mathbf { i } + 6 \mathbf { j } + 12 \mathbf { k } + t ( 8 \mathbf { i } + 5 \mathbf { j } - 8 \mathbf { k } )$$ Show that \(l\) is parallel to \(\Pi\). Find the position vector of the point at which the line with equation \(\mathbf { r } = 5 \mathbf { i } - 4 \mathbf { j } + 7 \mathbf { k } + s ( 2 \mathbf { i } - \mathbf { j } + \mathbf { k } )\) meets \(\Pi\). Find the perpendicular distance from the point with position vector \(9 \mathbf { i } + 11 \mathbf { j } + 2 \mathbf { k }\) to \(l\).
CAIE FP1 2012 November Q10
10 Write down the eigenvalues of the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r } 1 & 4 & - 16
0 & 2 & 3
0 & 0 & 3 \end{array} \right)$$ Find corresponding eigenvectors. Let \(n\) be a positive integer. Write down a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that $$\mathbf { A } ^ { n } = \mathbf { P D P } \mathbf { P } ^ { - 1 }$$ Find \(\mathbf { P } ^ { - 1 }\) and \(\mathbf { A } ^ { n }\). Hence find \(\lim _ { n \rightarrow \infty } \left( 3 ^ { - n } \mathbf { A } ^ { n } \right)\).
CAIE FP1 2012 November Q11 EITHER
The roots of the equation \(x ^ { 4 } - 3 x ^ { 2 } + 5 x - 2 = 0\) are \(\alpha , \beta , \gamma , \delta\), and \(\alpha ^ { n } + \beta ^ { n } + \gamma ^ { n } + \delta ^ { n }\) is denoted by \(S _ { n }\). Show that $$S _ { n + 4 } - 3 S _ { n + 2 } + 5 S _ { n + 1 } - 2 S _ { n } = 0$$ Find the values of
  1. \(S _ { 2 }\) and \(S _ { 4 }\),
  2. \(S _ { 3 }\) and \(S _ { 5 }\). Hence find the value of $$\alpha ^ { 2 } \left( \beta ^ { 3 } + \gamma ^ { 3 } + \delta ^ { 3 } \right) + \beta ^ { 2 } \left( \gamma ^ { 3 } + \delta ^ { 3 } + \alpha ^ { 3 } \right) + \gamma ^ { 2 } \left( \delta ^ { 3 } + \alpha ^ { 3 } + \beta ^ { 3 } \right) + \delta ^ { 2 } \left( \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } \right) .$$
CAIE FP1 2012 November Q11 OR
The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 3 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 2 & 1 & - 1 & 4
3 & 4 & 6 & 1
- 1 & 2 & 8 & - 7 \end{array} \right)$$ The range space of T is \(R\). In any order,
  1. show that the dimension of \(R\) is 2 ,
  2. find a basis for \(R\) and obtain a cartesian equation for \(R\),
  3. find a basis for the null space of T . The vector \(\left( \begin{array} { l } 8
    7
    k \end{array} \right)\) belongs to \(R\). Find the value of \(k\) and, with this value of \(k\), find the general solution of $$\mathbf { M } \mathbf { x } = \left( \begin{array} { l } 8
    7
    k \end{array} \right) .$$
CAIE FP1 2013 November Q6
6 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 1 & - 3 & - 1 & 2
4 & - 10 & 0 & 2
1 & - 1 & 3 & - 4
5 & - 12 & 1 & 1 \end{array} \right)$$ Find, in either order, the rank of \(\mathbf { M }\) and a basis for the null space \(K\) of T. Evaluate $$\mathbf { M } \left( \begin{array} { r } 1
- 2
- 3
- 4 \end{array} \right)$$ and hence show that every solution of $$\mathbf { M x } = \left( \begin{array} { r } 2
16
10
22 \end{array} \right)$$ has the form $$\mathbf { x } = \left( \begin{array} { r } 1
- 2
- 3
- 4 \end{array} \right) + \lambda \mathbf { e } _ { 1 } + \mu \mathbf { e } _ { 2 }$$ where \(\lambda\) and \(\mu\) are real numbers and \(\left\{ \mathbf { e } _ { 1 } , \mathbf { e } _ { 2 } \right\}\) is a basis for \(K\).
CAIE FP1 2013 November Q10
10
22 \end{array} \right)$$ has the form $$\mathbf { x } = \left( \begin{array} { r } 1
- 2
- 3
- 4 \end{array} \right) + \lambda \mathbf { e } _ { 1 } + \mu \mathbf { e } _ { 2 }$$ where \(\lambda\) and \(\mu\) are real numbers and \(\left\{ \mathbf { e } _ { 1 } , \mathbf { e } _ { 2 } \right\}\) is a basis for \(K\). 7 The square matrix \(\mathbf { A }\) has \(\lambda\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { A } ^ { 2 }\) and state the corresponding eigenvalue. Find the eigenvalues of the matrix \(\mathbf { B }\), where $$\mathbf { B } = \left( \begin{array} { l l l } 1 & 3 & 0
2 & 0 & 2
1 & 1 & 2 \end{array} \right)$$ Find the eigenvalues of \(\mathbf { B } ^ { 4 } + 2 \mathbf { B } ^ { 2 } + 3 \mathbf { I }\), where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix. 8 The plane \(\Pi _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 2
3
- 1 \end{array} \right) + s \left( \begin{array} { l } 1
0
1 \end{array} \right) + t \left( \begin{array} { r } 1
- 1
- 2 \end{array} \right)\). Find a cartesian equation of \(\Pi _ { 1 }\). The plane \(\Pi _ { 2 }\) has equation \(2 x - y + z = 10\). Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\). Find an equation of the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), giving your answer in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b }\). 9 The curve \(C\) has parametric equations $$x = t ^ { 2 } , \quad y = t - \frac { 1 } { 3 } t ^ { 3 } , \quad \text { for } 0 \leqslant t \leqslant 1 .$$ Find the surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Find the coordinates of the centroid of the region bounded by \(C\), the \(x\)-axis and the line \(x = 1\). 10 The curve \(C\) has equation $$y = \frac { p x ^ { 2 } + 4 x + 1 } { x + 1 }$$ where \(p\) is a positive constant and \(p \neq 3\).
  1. Obtain the equations of the asymptotes of \(C\).
  2. Find the value of \(p\) for which the \(x\)-axis is a tangent to \(C\), and sketch \(C\) in this case.
  3. For the case \(p = 1\), show that \(C\) has no turning points, and sketch \(C\), giving the exact coordinates of the points of intersection of \(C\) with the \(x\)-axis.