9 Find a cartesian equation of the plane \(\Pi\) containing the lines
$$\mathbf { r } = 3 \mathbf { i } + \mathbf { k } + s ( 2 \mathbf { i } + \mathbf { j } - \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 3 \mathbf { i } - 7 \mathbf { j } + 10 \mathbf { k } + t ( \mathbf { i } - 3 \mathbf { j } + 4 \mathbf { k } )$$
The line \(l\) passes through the point \(P\) with position vector \(6 \mathbf { i } - 2 \mathbf { j } + \mathbf { k }\) and is parallel to the vector \(2 \mathbf { i } + \mathbf { j } - 4 \mathbf { k }\). Find
- the position vector of the point where \(l\) meets \(\Pi\),
- the perpendicular distance from \(P\) to \(\Pi\),
- the acute angle between \(l\) and \(\Pi\).