CAIE FP1 2011 November — Question 9

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2011
SessionNovember
TopicVectors: Lines & Planes

9 Find a cartesian equation of the plane \(\Pi\) containing the lines $$\mathbf { r } = 3 \mathbf { i } + \mathbf { k } + s ( 2 \mathbf { i } + \mathbf { j } - \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 3 \mathbf { i } - 7 \mathbf { j } + 10 \mathbf { k } + t ( \mathbf { i } - 3 \mathbf { j } + 4 \mathbf { k } )$$ The line \(l\) passes through the point \(P\) with position vector \(6 \mathbf { i } - 2 \mathbf { j } + \mathbf { k }\) and is parallel to the vector \(2 \mathbf { i } + \mathbf { j } - 4 \mathbf { k }\). Find
  1. the position vector of the point where \(l\) meets \(\Pi\),
  2. the perpendicular distance from \(P\) to \(\Pi\),
  3. the acute angle between \(l\) and \(\Pi\).