The roots of the equation \(x ^ { 4 } - 3 x ^ { 2 } + 5 x - 2 = 0\) are \(\alpha , \beta , \gamma , \delta\), and \(\alpha ^ { n } + \beta ^ { n } + \gamma ^ { n } + \delta ^ { n }\) is denoted by \(S _ { n }\). Show that
$$S _ { n + 4 } - 3 S _ { n + 2 } + 5 S _ { n + 1 } - 2 S _ { n } = 0$$
Find the values of
- \(S _ { 2 }\) and \(S _ { 4 }\),
- \(S _ { 3 }\) and \(S _ { 5 }\).
Hence find the value of
$$\alpha ^ { 2 } \left( \beta ^ { 3 } + \gamma ^ { 3 } + \delta ^ { 3 } \right) + \beta ^ { 2 } \left( \gamma ^ { 3 } + \delta ^ { 3 } + \alpha ^ { 3 } \right) + \gamma ^ { 2 } \left( \delta ^ { 3 } + \alpha ^ { 3 } + \beta ^ { 3 } \right) + \delta ^ { 2 } \left( \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } \right) .$$