CAIE FP1 2012 November — Question 5

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2012
SessionNovember
TopicReduction Formulae

5 Let \(I _ { n }\) denote \(\int _ { 0 } ^ { \infty } x ^ { n } \mathrm { e } ^ { - 2 x } \mathrm {~d} x\). Show that \(I _ { n } = \frac { 1 } { 2 } n I _ { n - 1 }\), for \(n \geqslant 1\). Prove by mathematical induction that, for all positive integers \(n , I _ { n } = \frac { n ! } { 2 ^ { n + 1 } }\).