| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2012 |
| Session | November |
| Topic | Reduction Formulae |
5 Let \(I _ { n }\) denote \(\int _ { 0 } ^ { \infty } x ^ { n } \mathrm { e } ^ { - 2 x } \mathrm {~d} x\). Show that \(I _ { n } = \frac { 1 } { 2 } n I _ { n - 1 }\), for \(n \geqslant 1\).
Prove by mathematical induction that, for all positive integers \(n , I _ { n } = \frac { n ! } { 2 ^ { n + 1 } }\).