CAIE FP1 2013 November — Question 10

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2013
SessionNovember
TopicInvariant lines and eigenvalues and vectors

10
22 \end{array} \right)$$ has the form $$\mathbf { x } = \left( \begin{array} { r } 1
- 2
- 3
- 4 \end{array} \right) + \lambda \mathbf { e } _ { 1 } + \mu \mathbf { e } _ { 2 }$$ where \(\lambda\) and \(\mu\) are real numbers and \(\left\{ \mathbf { e } _ { 1 } , \mathbf { e } _ { 2 } \right\}\) is a basis for \(K\). 7 The square matrix \(\mathbf { A }\) has \(\lambda\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { A } ^ { 2 }\) and state the corresponding eigenvalue. Find the eigenvalues of the matrix \(\mathbf { B }\), where $$\mathbf { B } = \left( \begin{array} { l l l } 1 & 3 & 0
2 & 0 & 2
1 & 1 & 2 \end{array} \right)$$ Find the eigenvalues of \(\mathbf { B } ^ { 4 } + 2 \mathbf { B } ^ { 2 } + 3 \mathbf { I }\), where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix. 8 The plane \(\Pi _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 2
3
- 1 \end{array} \right) + s \left( \begin{array} { l } 1
0
1 \end{array} \right) + t \left( \begin{array} { r } 1
- 1
- 2 \end{array} \right)\). Find a cartesian equation of \(\Pi _ { 1 }\). The plane \(\Pi _ { 2 }\) has equation \(2 x - y + z = 10\). Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\). Find an equation of the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), giving your answer in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b }\). 9 The curve \(C\) has parametric equations $$x = t ^ { 2 } , \quad y = t - \frac { 1 } { 3 } t ^ { 3 } , \quad \text { for } 0 \leqslant t \leqslant 1 .$$ Find the surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Find the coordinates of the centroid of the region bounded by \(C\), the \(x\)-axis and the line \(x = 1\). 10 The curve \(C\) has equation $$y = \frac { p x ^ { 2 } + 4 x + 1 } { x + 1 }$$ where \(p\) is a positive constant and \(p \neq 3\).
  1. Obtain the equations of the asymptotes of \(C\).
  2. Find the value of \(p\) for which the \(x\)-axis is a tangent to \(C\), and sketch \(C\) in this case.
  3. For the case \(p = 1\), show that \(C\) has no turning points, and sketch \(C\), giving the exact coordinates of the points of intersection of \(C\) with the \(x\)-axis.