| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2012 |
| Session | November |
| Topic | Sequences and series, recurrence and convergence |
4 Let \(\mathrm { f } ( r ) = r ( r + 1 ) ( r + 2 )\). Show that
$$\mathrm { f } ( r ) - \mathrm { f } ( r - 1 ) = 3 r ( r + 1 )$$
Hence show that \(\sum _ { r = 1 } ^ { n } r ( r + 1 ) = \frac { 1 } { 3 } n ( n + 1 ) ( n + 2 )\).
Using the standard result for \(\sum _ { r = 1 } ^ { n } r\), deduce that \(\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )\).
Find the sum of the series
$$1 ^ { 2 } + 2 \times 2 ^ { 2 } + 3 ^ { 2 } + 2 \times 4 ^ { 2 } + 5 ^ { 2 } + 2 \times 6 ^ { 2 } + \ldots + 2 ( n - 1 ) ^ { 2 } + n ^ { 2 }$$
where \(n\) is odd.