| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2012 |
| Session | November |
| Topic | Complex numbers 2 |
6 Use de Moivre's theorem to show that
$$\cos 4 \theta = 8 \cos ^ { 4 } \theta - 8 \cos ^ { 2 } \theta + 1$$
Without using a calculator, verify that \(\cos 4 \theta = - \cos 3 \theta\) for each of the values \(\theta = \frac { 1 } { 7 } \pi , \frac { 3 } { 7 } \pi , \frac { 5 } { 7 } \pi , \pi\).
Using the result \(\cos 3 \theta = 4 \cos ^ { 3 } \theta - 3 \cos \theta\), show that the roots of the equation
$$8 c ^ { 4 } + 4 c ^ { 3 } - 8 c ^ { 2 } - 3 c + 1 = 0$$
are \(\cos \frac { 1 } { 7 } \pi , \cos \frac { 3 } { 7 } \pi , \cos \frac { 5 } { 7 } \pi , - 1\).
Deduce that \(\cos \frac { 1 } { 7 } \pi + \cos \frac { 3 } { 7 } \pi + \cos \frac { 5 } { 7 } \pi = \frac { 1 } { 2 }\).