| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2011 |
| Session | November |
| Topic | Reduction Formulae |
7 Show that \(\frac { \mathrm { d } } { \mathrm { d } t } \left( t \left( 1 + t ^ { 3 } \right) ^ { n } \right) = ( 3 n + 1 ) \left( 1 + t ^ { 3 } \right) ^ { n } - 3 n \left( 1 + t ^ { 3 } \right) ^ { n - 1 }\).
Let \(I _ { n } = \int _ { 0 } ^ { 1 } \left( 1 + t ^ { 3 } \right) ^ { n } \mathrm {~d} t\). Using the above result, or otherwise, show that
$$( 3 n + 1 ) I _ { n } = 2 ^ { n } + 3 n I _ { n - 1 }$$
Hence evaluate \(I _ { 3 }\).