| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2013 |
| Session | November |
| Topic | 3x3 Matrices |
6 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where
$$\mathbf { M } = \left( \begin{array} { r r r r }
1 & - 3 & - 1 & 2
4 & - 10 & 0 & 2
1 & - 1 & 3 & - 4
5 & - 12 & 1 & 1
\end{array} \right)$$
Find, in either order, the rank of \(\mathbf { M }\) and a basis for the null space \(K\) of T.
Evaluate
$$\mathbf { M } \left( \begin{array} { r }
1
- 2
- 3
- 4
\end{array} \right)$$
and hence show that every solution of
$$\mathbf { M x } = \left( \begin{array} { r }
2
16
10
22
\end{array} \right)$$
has the form
$$\mathbf { x } = \left( \begin{array} { r }
1
- 2
- 3
- 4
\end{array} \right) + \lambda \mathbf { e } _ { 1 } + \mu \mathbf { e } _ { 2 }$$
where \(\lambda\) and \(\mu\) are real numbers and \(\left\{ \mathbf { e } _ { 1 } , \mathbf { e } _ { 2 } \right\}\) is a basis for \(K\).