Questions — AQA (3508 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
AQA FP3 2006 June Q4
4 The diagram shows the curve \(C\) with polar equation $$r = 6 ( 1 - \cos \theta ) , \quad 0 \leqslant \theta < 2 \pi$$ \includegraphics[max width=\textwidth, alt={}, center]{06ae13de-5cf3-421d-ac7a-ee9f74b653be-3_552_903_922_550}
  1. Find the area of the region bounded by the curve \(C\).
  2. The circle with cartesian equation \(x ^ { 2 } + y ^ { 2 } = 9\) intersects the curve \(C\) at the points \(A\) and \(B\).
    1. Find the polar coordinates of \(A\) and \(B\).
    2. Find, in surd form, the length of \(A B\).
AQA FP3 2006 June Q5
5
  1. Show that \(\lim _ { a \rightarrow \infty } \left( \frac { 3 a + 2 } { 2 a + 3 } \right) = \frac { 3 } { 2 }\).
  2. Evaluate \(\int _ { 1 } ^ { \infty } \left( \frac { 3 } { 3 x + 2 } - \frac { 2 } { 2 x + 3 } \right) \mathrm { d } x\), giving your answer in the form \(\ln k\), where \(k\) is a rational number.
    (5 marks)
AQA FP3 2006 June Q6
6
  1. Show that the substitution $$u = \frac { \mathrm { d } y } { \mathrm {~d} x } + 2 y$$ transforms the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = \mathrm { e } ^ { - 2 x }$$ into $$\frac { \mathrm { d } u } { \mathrm {~d} x } + 2 u = \mathrm { e } ^ { - 2 x }$$ (4 marks)
  2. By using an integrating factor, or otherwise, find the general solution of $$\frac { \mathrm { d } u } { \mathrm {~d} x } + 2 u = \mathrm { e } ^ { - 2 x }$$ giving your answer in the form \(u = \mathrm { f } ( x )\).
  3. Hence find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = \mathrm { e } ^ { - 2 x }$$ giving your answer in the form \(y = \mathrm { g } ( x )\).
AQA FP3 2006 June Q7
7
    1. Write down the first three terms of the binomial expansion of \(( 1 + y ) ^ { - 1 }\), in ascending powers of \(y\).
    2. By using the expansion $$\cos x = 1 - \frac { x ^ { 2 } } { 2 ! } + \frac { x ^ { 4 } } { 4 ! } - \ldots$$ and your answer to part (a)(i), or otherwise, show that the first three non-zero terms in the expansion, in ascending powers of \(x\), of \(\sec x\) are $$1 + \frac { x ^ { 2 } } { 2 } + \frac { 5 x ^ { 4 } } { 24 }$$
  1. By using Maclaurin's theorem, or otherwise, show that the first two non-zero terms in the expansion, in ascending powers of \(x\), of \(\tan x\) are $$x + \frac { x ^ { 3 } } { 3 }$$
  2. Hence find \(\lim _ { x \rightarrow 0 } \left( \frac { x \tan 2 x } { \sec x - 1 } \right)\).
AQA FP3 2008 June Q1
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = \ln ( x + y )$$ and $$y ( 2 ) = 3$$ Use the improved Euler formula $$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$ where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.1\), to obtain an approximation to \(y ( 2.1 )\), giving your answer to four decimal places.
(6 marks)
AQA FP3 2008 June Q2
2
  1. Find the values of the constants \(a , b , c\) and \(d\) for which \(a + b x + c \sin x + d \cos x\) is a particular integral of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } - 3 y = 10 \sin x - 3 x$$ (4 marks)
  2. Hence find the general solution of this differential equation.
AQA FP3 2008 June Q3
3
  1. Show that \(x ^ { 2 } = 1 - 2 y\) can be written in the form \(x ^ { 2 } + y ^ { 2 } = ( 1 - y ) ^ { 2 }\).
  2. A curve has cartesian equation \(x ^ { 2 } = 1 - 2 y\). Find its polar equation in the form \(r = \mathrm { f } ( \theta )\), given that \(r > 0\).
AQA FP3 2008 June Q4
4
  1. A differential equation is given by $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - \frac { \mathrm { d } y } { \mathrm {~d} x } = 3 x ^ { 2 }$$ Show that the substitution $$u = \frac { \mathrm { d } y } { \mathrm {~d} x }$$ transforms this differential equation into $$\frac { \mathrm { d } u } { \mathrm {~d} x } - \frac { 1 } { x } u = 3 x$$
  2. By using an integrating factor, find the general solution of $$\frac { \mathrm { d } u } { \mathrm {~d} x } - \frac { 1 } { x } u = 3 x$$ giving your answer in the form \(u = \mathrm { f } ( x )\).
  3. Hence find the general solution of the differential equation $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - \frac { \mathrm { d } y } { \mathrm {~d} x } = 3 x ^ { 2 }$$ giving your answer in the form \(y = \mathrm { g } ( x )\).
AQA FP3 2008 June Q5
5
  1. Find \(\int x ^ { 3 } \ln x \mathrm {~d} x\).
  2. Explain why \(\int _ { 0 } ^ { \mathrm { e } } x ^ { 3 } \ln x \mathrm {~d} x\) is an improper integral.
  3. Evaluate \(\int _ { 0 } ^ { \mathrm { e } } x ^ { 3 } \ln x \mathrm {~d} x\), showing the limiting process used.
AQA FP3 2008 June Q6
6
  1. Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } - 3 y = 10 \mathrm { e } ^ { - 2 x } - 9$$ (10 marks)
  2. Hence express \(y\) in terms of \(x\), given that \(y = 7\) when \(x = 0\) and that \(\frac { \mathrm { d } y } { \mathrm {~d} x } \rightarrow 0\) as \(x \rightarrow \infty\).
AQA FP3 2008 June Q7
7
  1. Write down the expansion of \(\sin 2 x\) in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\).
    1. Given that \(y = \sqrt { 3 + \mathrm { e } ^ { x } }\), find the values of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) when \(x = 0\).
    2. Using Maclaurin's theorem, show that, for small values of \(x\), $$\sqrt { 3 + \mathrm { e } ^ { x } } \approx 2 + \frac { 1 } { 4 } x + \frac { 7 } { 64 } x ^ { 2 }$$
  2. Find $$\lim _ { x \rightarrow 0 } \left[ \frac { \sqrt { 3 + \mathrm { e } ^ { x } } - 2 } { \sin 2 x } \right]$$
AQA FP3 2008 June Q8
8 The polar equation of a curve \(C\) is $$r = 5 + 2 \cos \theta , \quad - \pi \leqslant \theta \leqslant \pi$$
  1. Verify that the points \(A\) and \(B\), with polar coordinates ( 7,0 ) and ( \(3 , \pi\) ) respectively, lie on the curve \(C\).
  2. Sketch the curve \(C\).
  3. Find the area of the region bounded by the curve \(C\).
  4. The point \(P\) is the point on the curve \(C\) for which \(\theta = \alpha\), where \(0 < \alpha \leqslant \frac { \pi } { 2 }\). The point \(Q\) lies on the curve such that \(P O Q\) is a straight line, where the point \(O\) is the pole. Find, in terms of \(\alpha\), the area of triangle \(O Q B\).
AQA FP3 2009 June Q1
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = \sqrt { x ^ { 2 } + y + 1 }$$ and $$y ( 3 ) = 2$$
  1. Use the Euler formula $$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with \(h = 0.1\), to obtain an approximation to \(y ( 3.1 )\), giving your answer to four decimal places.
  2. Use the formula $$y _ { r + 1 } = y _ { r - 1 } + 2 h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with your answer to part (a), to obtain an approximation to \(y ( 3.2 )\), giving your answer to three decimal places.
AQA FP3 2009 June Q2
2 By using an integrating factor, find the solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } - y \tan x = 2 \sin x$$ given that \(y = 2\) when \(x = 0\).
(9 marks)
AQA FP3 2009 June Q3
3 The diagram shows a sketch of a circle which passes through the origin \(O\).
\includegraphics[max width=\textwidth, alt={}, center]{13cfb9ca-9495-4b69-80c5-9fb7e8e0f957-3_423_451_356_794} The equation of the circle is \(( x - 3 ) ^ { 2 } + ( y - 4 ) ^ { 2 } = 25\) and \(O A\) is a diameter.
  1. Find the cartesian coordinates of the point \(A\).
  2. Using \(O\) as the pole and the positive \(x\)-axis as the initial line, the polar coordinates of \(A\) are \(( k , \alpha )\).
    1. Find the value of \(k\) and the value of \(\tan \alpha\).
    2. Find the polar equation of the circle \(( x - 3 ) ^ { 2 } + ( y - 4 ) ^ { 2 } = 25\), giving your answer in the form \(r = p \cos \theta + q \sin \theta\).
AQA FP3 2009 June Q4
4 Evaluate the improper integral $$\int _ { 1 } ^ { \infty } \left( \frac { 1 } { x } - \frac { 4 } { 4 x + 1 } \right) \mathrm { d } x$$ showing the limiting process used and giving your answer in the form \(\ln k\), where \(k\) is a constant to be found.
AQA FP3 2009 June Q5
5 It is given that \(y\) satisfies the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 5 y = 8 \sin x + 4 \cos x$$
  1. Find the value of the constant \(k\) for which \(y = k \sin x\) is a particular integral of the given differential equation.
  2. Solve the differential equation, expressing \(y\) in terms of \(x\), given that \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 4\) when \(x = 0\).
    (8 marks)
AQA FP3 2009 June Q6
6 The function f is defined by $$\mathrm { f } ( x ) = ( 9 + \tan x ) ^ { \frac { 1 } { 2 } }$$
    1. Find \(f ^ { \prime \prime } ( x )\).
    2. By using Maclaurin's theorem, show that, for small values of \(x\), $$( 9 + \tan x ) ^ { \frac { 1 } { 2 } } \approx 3 + \frac { x } { 6 } - \frac { x ^ { 2 } } { 216 }$$
  1. Find $$\lim _ { x \rightarrow 0 } \left[ \frac { f ( x ) - 3 } { \sin 3 x } \right]$$
AQA FP3 2009 June Q7
7 The diagram shows the curve \(C _ { 1 }\) with polar equation $$r = 1 + 6 \mathrm { e } ^ { - \frac { \theta } { \pi } } , \quad 0 \leqslant \theta \leqslant 2 \pi$$ \includegraphics[max width=\textwidth, alt={}, center]{13cfb9ca-9495-4b69-80c5-9fb7e8e0f957-4_300_513_1414_760}
  1. Find, in terms of \(\pi\) and e , the area of the shaded region bounded by \(C _ { 1 }\) and the initial line.
  2. The polar equation of a curve \(C _ { 2 }\) is $$r = \mathrm { e } ^ { \frac { \theta } { \pi } } , \quad 0 \leqslant \theta \leqslant 2 \pi$$ Sketch the curve \(C _ { 2 }\) and state the polar coordinates of the end-points of this curve.
  3. The curves \(C _ { 1 }\) and \(C _ { 2 }\) intersect at the point \(P\). Find the polar coordinates of \(P\).
AQA FP3 2009 June Q8
8
  1. Given that \(x = t ^ { 2 }\), where \(t \geqslant 0\), and that \(y\) is a function of \(x\), show that:
    1. \(2 \sqrt { x } \frac { \mathrm {~d} y } { \mathrm {~d} x } = \frac { \mathrm { d } y } { \mathrm {~d} t }\);
    2. \(\quad 4 x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } = \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } }\).
  2. Hence show that the substitution \(x = t ^ { 2 }\), where \(t \geqslant 0\), transforms the differential equation $$4 x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 ( 1 + 2 \sqrt { x } ) \frac { \mathrm { d } y } { \mathrm {~d} x } - 3 y = 0$$ into $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} t } - 3 y = 0$$ (2 marks)
  3. Hence find the general solution of the differential equation $$4 x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 ( 1 + 2 \sqrt { x } ) \frac { \mathrm { d } y } { \mathrm {~d} x } - 3 y = 0$$ giving your answer in the form \(y = \mathrm { g } ( x )\).
AQA FP3 2010 June Q1
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = x + 3 + \sin y$$ and $$y ( 1 ) = 1$$
  1. Use the Euler formula $$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with \(h = 0.1\), to obtain an approximation to \(y ( 1.1 )\), giving your answer to four decimal places.
  2. Use the formula $$y _ { r + 1 } = y _ { r - 1 } + 2 h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with your answer to part (a), to obtain an approximation to \(y ( 1.2 )\), giving your answer to three decimal places.
AQA FP3 2010 June Q2
2
  1. Find the value of the constant \(k\) for which \(k \sin 2 x\) is a particular integral of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + y = \sin 2 x$$
  2. Hence find the general solution of this differential equation.
AQA FP3 2010 June Q3
3
  1. Explain why \(\int _ { 1 } ^ { \infty } 4 x \mathrm { e } ^ { - 4 x } \mathrm {~d} x\) is an improper integral.
  2. Find \(\quad \int 4 x \mathrm { e } ^ { - 4 x } \mathrm {~d} x\).
  3. Hence evaluate \(\int _ { 1 } ^ { \infty } 4 x \mathrm { e } ^ { - 4 x } \mathrm {~d} x\), showing the limiting process used.
AQA FP3 2010 June Q4
4 By using an integrating factor, find the solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + \frac { 3 } { x } y = \left( x ^ { 4 } + 3 \right) ^ { \frac { 3 } { 2 } }$$ given that \(y = \frac { 1 } { 5 }\) when \(x = 1\).
(9 marks)
AQA FP3 2010 June Q5
5
  1. Write down the expansion of \(\cos 4 x\) in ascending powers of \(x\) up to and including the term in \(x ^ { 4 }\). Give your answer in its simplest form.
    1. Given that \(y = \ln \left( 2 - \mathrm { e } ^ { x } \right)\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x } , \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) and \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\).
      (You may leave your expression for \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) unsimplified.)
    2. Hence, by using Maclaurin's theorem, show that the first three non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln \left( 2 - \mathrm { e } ^ { x } \right)\) are $$- x - x ^ { 2 } - x ^ { 3 }$$
  2. Find $$\lim _ { x \rightarrow 0 } \left[ \frac { x \ln \left( 2 - \mathrm { e } ^ { x } \right) } { 1 - \cos 4 x } \right]$$