AQA FP3 2008 June — Question 4

Exam BoardAQA
ModuleFP3 (Further Pure Mathematics 3)
Year2008
SessionJune
TopicFirst order differential equations (integrating factor)

4
  1. A differential equation is given by $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - \frac { \mathrm { d } y } { \mathrm {~d} x } = 3 x ^ { 2 }$$ Show that the substitution $$u = \frac { \mathrm { d } y } { \mathrm {~d} x }$$ transforms this differential equation into $$\frac { \mathrm { d } u } { \mathrm {~d} x } - \frac { 1 } { x } u = 3 x$$
  2. By using an integrating factor, find the general solution of $$\frac { \mathrm { d } u } { \mathrm {~d} x } - \frac { 1 } { x } u = 3 x$$ giving your answer in the form \(u = \mathrm { f } ( x )\).
  3. Hence find the general solution of the differential equation $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - \frac { \mathrm { d } y } { \mathrm {~d} x } = 3 x ^ { 2 }$$ giving your answer in the form \(y = \mathrm { g } ( x )\).