AQA FP3 2006 June — Question 6

Exam BoardAQA
ModuleFP3 (Further Pure Mathematics 3)
Year2006
SessionJune
TopicSecond order differential equations

6
  1. Show that the substitution $$u = \frac { \mathrm { d } y } { \mathrm {~d} x } + 2 y$$ transforms the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = \mathrm { e } ^ { - 2 x }$$ into $$\frac { \mathrm { d } u } { \mathrm {~d} x } + 2 u = \mathrm { e } ^ { - 2 x }$$ (4 marks)
  2. By using an integrating factor, or otherwise, find the general solution of $$\frac { \mathrm { d } u } { \mathrm {~d} x } + 2 u = \mathrm { e } ^ { - 2 x }$$ giving your answer in the form \(u = \mathrm { f } ( x )\).
  3. Hence find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = \mathrm { e } ^ { - 2 x }$$ giving your answer in the form \(y = \mathrm { g } ( x )\).