Write down the expansion of \(\cos 4 x\) in ascending powers of \(x\) up to and including the term in \(x ^ { 4 }\). Give your answer in its simplest form.
Given that \(y = \ln \left( 2 - \mathrm { e } ^ { x } \right)\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x } , \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) and \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\).
(You may leave your expression for \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) unsimplified.)
Hence, by using Maclaurin's theorem, show that the first three non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln \left( 2 - \mathrm { e } ^ { x } \right)\) are
$$- x - x ^ { 2 } - x ^ { 3 }$$
Find
$$\lim _ { x \rightarrow 0 } \left[ \frac { x \ln \left( 2 - \mathrm { e } ^ { x } \right) } { 1 - \cos 4 x } \right]$$