7 The diagram shows the curve \(C _ { 1 }\) with polar equation
$$r = 1 + 6 \mathrm { e } ^ { - \frac { \theta } { \pi } } , \quad 0 \leqslant \theta \leqslant 2 \pi$$
\includegraphics[max width=\textwidth, alt={}, center]{13cfb9ca-9495-4b69-80c5-9fb7e8e0f957-4_300_513_1414_760}
- Find, in terms of \(\pi\) and e , the area of the shaded region bounded by \(C _ { 1 }\) and the initial line.
- The polar equation of a curve \(C _ { 2 }\) is
$$r = \mathrm { e } ^ { \frac { \theta } { \pi } } , \quad 0 \leqslant \theta \leqslant 2 \pi$$
Sketch the curve \(C _ { 2 }\) and state the polar coordinates of the end-points of this curve.
- The curves \(C _ { 1 }\) and \(C _ { 2 }\) intersect at the point \(P\). Find the polar coordinates of \(P\).