AQA FP3 2009 June — Question 7

Exam BoardAQA
ModuleFP3 (Further Pure Mathematics 3)
Year2009
SessionJune
TopicPolar coordinates

7 The diagram shows the curve \(C _ { 1 }\) with polar equation $$r = 1 + 6 \mathrm { e } ^ { - \frac { \theta } { \pi } } , \quad 0 \leqslant \theta \leqslant 2 \pi$$ \includegraphics[max width=\textwidth, alt={}, center]{13cfb9ca-9495-4b69-80c5-9fb7e8e0f957-4_300_513_1414_760}
  1. Find, in terms of \(\pi\) and e , the area of the shaded region bounded by \(C _ { 1 }\) and the initial line.
  2. The polar equation of a curve \(C _ { 2 }\) is $$r = \mathrm { e } ^ { \frac { \theta } { \pi } } , \quad 0 \leqslant \theta \leqslant 2 \pi$$ Sketch the curve \(C _ { 2 }\) and state the polar coordinates of the end-points of this curve.
  3. The curves \(C _ { 1 }\) and \(C _ { 2 }\) intersect at the point \(P\). Find the polar coordinates of \(P\).