AQA FP3 2009 June — Question 8

Exam BoardAQA
ModuleFP3 (Further Pure Mathematics 3)
Year2009
SessionJune
TopicFirst order differential equations (integrating factor)

8
  1. Given that \(x = t ^ { 2 }\), where \(t \geqslant 0\), and that \(y\) is a function of \(x\), show that:
    1. \(2 \sqrt { x } \frac { \mathrm {~d} y } { \mathrm {~d} x } = \frac { \mathrm { d } y } { \mathrm {~d} t }\);
    2. \(\quad 4 x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } = \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } }\).
  2. Hence show that the substitution \(x = t ^ { 2 }\), where \(t \geqslant 0\), transforms the differential equation $$4 x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 ( 1 + 2 \sqrt { x } ) \frac { \mathrm { d } y } { \mathrm {~d} x } - 3 y = 0$$ into $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} t } - 3 y = 0$$ (2 marks)
  3. Hence find the general solution of the differential equation $$4 x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 ( 1 + 2 \sqrt { x } ) \frac { \mathrm { d } y } { \mathrm {~d} x } - 3 y = 0$$ giving your answer in the form \(y = \mathrm { g } ( x )\).