AQA FP3 2008 June — Question 8

Exam BoardAQA
ModuleFP3 (Further Pure Mathematics 3)
Year2008
SessionJune
TopicPolar coordinates

8 The polar equation of a curve \(C\) is $$r = 5 + 2 \cos \theta , \quad - \pi \leqslant \theta \leqslant \pi$$
  1. Verify that the points \(A\) and \(B\), with polar coordinates ( 7,0 ) and ( \(3 , \pi\) ) respectively, lie on the curve \(C\).
  2. Sketch the curve \(C\).
  3. Find the area of the region bounded by the curve \(C\).
  4. The point \(P\) is the point on the curve \(C\) for which \(\theta = \alpha\), where \(0 < \alpha \leqslant \frac { \pi } { 2 }\). The point \(Q\) lies on the curve such that \(P O Q\) is a straight line, where the point \(O\) is the pole. Find, in terms of \(\alpha\), the area of triangle \(O Q B\).