A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Sequences and series, recurrence and convergence
Q5
AQA FP3 2006 June — Question 5
Exam Board
AQA
Module
FP3 (Further Pure Mathematics 3)
Year
2006
Session
June
Topic
Sequences and series, recurrence and convergence
5
Show that \(\lim _ { a \rightarrow \infty } \left( \frac { 3 a + 2 } { 2 a + 3 } \right) = \frac { 3 } { 2 }\).
Evaluate \(\int _ { 1 } ^ { \infty } \left( \frac { 3 } { 3 x + 2 } - \frac { 2 } { 2 x + 3 } \right) \mathrm { d } x\), giving your answer in the form \(\ln k\), where \(k\) is a rational number.
(5 marks)
This paper
(7 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7