Questions — AQA FP2 (142 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
AQA FP2 2008 January Q4
4 The cubic equation $$z ^ { 3 } + \mathrm { i } z ^ { 2 } + 3 z - ( 1 + \mathrm { i } ) = 0$$ has roots \(\alpha , \beta\) and \(\gamma\).
  1. Write down the value of:
    1. \(\alpha + \beta + \gamma\);
    2. \(\alpha \beta + \beta \gamma + \gamma \alpha\);
    3. \(\alpha \beta \gamma\).
  2. Find the value of:
    1. \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 }\);
    2. \(\alpha ^ { 2 } \beta ^ { 2 } + \beta ^ { 2 } \gamma ^ { 2 } + \gamma ^ { 2 } \alpha ^ { 2 }\);
    3. \(\alpha ^ { 2 } \beta ^ { 2 } \gamma ^ { 2 }\).
  3. Hence write down a cubic equation whose roots are \(\alpha ^ { 2 } , \beta ^ { 2 }\) and \(\gamma ^ { 2 }\).
AQA FP2 2008 January Q5
5 Prove by induction that for all integers \(n \geqslant 1\) $$\sum _ { r = 1 } ^ { n } \left( r ^ { 2 } + 1 \right) ( r ! ) = n ( n + 1 ) !$$
AQA FP2 2008 January Q6
6
    1. By applying De Moivre's theorem to \(( \cos \theta + \mathrm { i } \sin \theta ) ^ { 3 }\), show that $$\cos 3 \theta = \cos ^ { 3 } \theta - 3 \cos \theta \sin ^ { 2 } \theta$$
    2. Find a similar expression for \(\sin 3 \theta\).
    3. Deduce that $$\tan 3 \theta = \frac { \tan ^ { 3 } \theta - 3 \tan \theta } { 3 \tan ^ { 2 } \theta - 1 }$$
    1. Hence show that \(\tan \frac { \pi } { 12 }\) is a root of the cubic equation $$x ^ { 3 } - 3 x ^ { 2 } - 3 x + 1 = 0$$
    2. Find two other values of \(\theta\), where \(0 < \theta < \pi\), for which \(\tan \theta\) is a root of this cubic equation.
  1. Hence show that $$\tan \frac { \pi } { 12 } + \tan \frac { 5 \pi } { 12 } = 4$$
AQA FP2 2008 January Q7
7
  1. Given that \(y = \ln \tanh \frac { x } { 2 }\), where \(x > 0\), show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \operatorname { cosech } x$$
  2. A curve has equation \(y = \ln \tanh \frac { x } { 2 }\), where \(x > 0\). The length of the arc of the curve between the points where \(x = 1\) and \(x = 2\) is denoted by \(s\).
    1. Show that $$s = \int _ { 1 } ^ { 2 } \operatorname { coth } x \mathrm {~d} x$$
    2. Hence show that \(s = \ln ( 2 \cosh 1 )\).
AQA FP2 2009 January Q1
1
  1. Use the definitions \(\sinh \theta = \frac { 1 } { 2 } \left( \mathrm { e } ^ { \theta } - \mathrm { e } ^ { - \theta } \right)\) and \(\cosh \theta = \frac { 1 } { 2 } \left( \mathrm { e } ^ { \theta } + \mathrm { e } ^ { - \theta } \right)\) to show that $$1 + 2 \sinh ^ { 2 } \theta = \cosh 2 \theta$$
  2. Solve the equation $$3 \cosh 2 \theta = 2 \sinh \theta + 11$$ giving each of your answers in the form \(\ln p\).
AQA FP2 2009 January Q2
2
  1. Indicate on an Argand diagram the region for which \(| z - 4 \mathrm { i } | \leqslant 2\).
  2. The complex number \(z\) satisfies \(| z - 4 \mathrm { i } | \leqslant 2\). Find the range of possible values of \(\arg z\).
AQA FP2 2009 January Q3
3
  1. Given that \(\mathrm { f } ( r ) = \frac { 1 } { 4 } r ^ { 2 } ( r + 1 ) ^ { 2 }\), show that $$\mathrm { f } ( r ) - \mathrm { f } ( r - 1 ) = r ^ { 3 }$$
  2. Use the method of differences to show that $$\sum _ { r = n } ^ { 2 n } r ^ { 3 } = \frac { 3 } { 4 } n ^ { 2 } ( n + 1 ) ( 5 n + 1 )$$
AQA FP2 2009 January Q4
4 It is given that \(\alpha , \beta\) and \(\gamma\) satisfy the equations $$\begin{aligned} & \alpha + \beta + \gamma = 1
& \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = - 5
& \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } = - 23 \end{aligned}$$
  1. Show that \(\alpha \beta + \beta \gamma + \gamma \alpha = 3\).
  2. Use the identity $$( \alpha + \beta + \gamma ) \left( \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } - \alpha \beta - \beta \gamma - \gamma \alpha \right) = \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } - 3 \alpha \beta \gamma$$ to find the value of \(\alpha \beta \gamma\).
  3. Write down a cubic equation, with integer coefficients, whose roots are \(\alpha , \beta\) and \(\gamma\).
  4. Explain why this cubic equation has two non-real roots.
  5. Given that \(\alpha\) is real, find the values of \(\alpha , \beta\) and \(\gamma\).
AQA FP2 2009 January Q5
5
  1. Given that \(u = \cosh ^ { 2 } x\), show that \(\frac { \mathrm { d } u } { \mathrm {~d} x } = \sinh 2 x\).
  2. Hence show that $$\int _ { 0 } ^ { 1 } \frac { \sinh 2 x } { 1 + \cosh ^ { 4 } x } \mathrm {~d} x = \tan ^ { - 1 } \left( \cosh ^ { 2 } 1 \right) - \frac { \pi } { 4 }$$
AQA FP2 2009 January Q6
6 Prove by induction that $$\frac { 2 \times 1 } { 2 \times 3 } + \frac { 2 ^ { 2 } \times 2 } { 3 \times 4 } + \frac { 2 ^ { 3 } \times 3 } { 4 \times 5 } + \ldots + \frac { 2 ^ { n } \times n } { ( n + 1 ) ( n + 2 ) } = \frac { 2 ^ { n + 1 } } { n + 2 } - 1$$ for all integers \(n \geqslant 1\).
AQA FP2 2009 January Q7
7
  1. Show that $$\frac { \mathrm { d } } { \mathrm {~d} x } \left( \cosh ^ { - 1 } \frac { 1 } { x } \right) = \frac { - 1 } { x \sqrt { 1 - x ^ { 2 } } }$$ (3 marks)
  2. A curve has equation $$y = \sqrt { 1 - x ^ { 2 } } - \cosh ^ { - 1 } \frac { 1 } { x } \quad ( 0 < x < 1 )$$ Show that:
    1. \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { \sqrt { 1 - x ^ { 2 } } } { x }\);
      (4 marks)
    2. the length of the arc of the curve from the point where \(x = \frac { 1 } { 4 }\) to the point where $$x = \frac { 3 } { 4 } \text { is } \ln 3 .$$ (5 marks)
AQA FP2 2009 January Q8
8
  1. Show that $$\left( z ^ { 4 } - \mathrm { e } ^ { \mathrm { i } \theta } \right) \left( z ^ { 4 } - \mathrm { e } ^ { - \mathrm { i } \theta } \right) = z ^ { 8 } - 2 z ^ { 4 } \cos \theta + 1$$ (2 marks)
  2. Hence solve the equation $$z ^ { 8 } - z ^ { 4 } + 1 = 0$$ giving your answers in the form \(\mathrm { e } ^ { \mathrm { i } \phi }\), where \(- \pi < \phi \leqslant \pi\).
  3. Indicate the roots on an Argand diagram.
AQA FP2 2006 June Q1
1
  1. Given that $$\frac { r ^ { 2 } + r - 1 } { r ( r + 1 ) } = A + B \left( \frac { 1 } { r } - \frac { 1 } { r + 1 } \right)$$ find the values of \(A\) and \(B\).
  2. Hence find the value of $$\sum _ { r = 1 } ^ { 99 } \frac { r ^ { 2 } + r - 1 } { r ( r + 1 ) }$$
AQA FP2 2006 June Q2
2 A curve has parametric equations $$x = t - \frac { 1 } { 3 } t ^ { 3 } , \quad y = t ^ { 2 }$$
  1. Show that $$\left( \frac { \mathrm { d } x } { \mathrm {~d} t } \right) ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} t } \right) ^ { 2 } = \left( 1 + t ^ { 2 } \right) ^ { 2 }$$
  2. The arc of the curve between \(t = 1\) and \(t = 2\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Show that \(S\), the surface area generated, is given by \(S = k \pi\), where \(k\) is a rational number to be found.
AQA FP2 2006 June Q3
3 The curve \(C\) has equation $$y = \cosh x - 3 \sinh x$$
    1. The line \(y = - 1\) meets \(C\) at the point \(( k , - 1 )\). Show that $$\mathrm { e } ^ { 2 k } - \mathrm { e } ^ { k } - 2 = 0$$
    2. Hence find \(k\), giving your answer in the form \(\ln a\).
    1. Find the \(x\)-coordinate of the point where the curve \(C\) intersects the \(x\)-axis, giving your answer in the form \(p \ln a\).
    2. Show that \(C\) has no stationary points.
    3. Show that there is exactly one point on \(C\) for which \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 0\).
AQA FP2 2006 June Q4
4
  1. On one Argand diagram, sketch the locus of points satisfying:
    1. \(| z - 3 + 2 \mathrm { i } | = 4\);
    2. \(\quad \arg ( z - 1 ) = - \frac { 1 } { 4 } \pi\).
  2. Indicate on your sketch the set of points satisfying both $$| z - 3 + 2 i | \leqslant 4$$ and $$\arg ( z - 1 ) = - \frac { 1 } { 4 } \pi$$ (1 mark)
AQA FP2 2006 June Q5
5 The cubic equation $$z ^ { 3 } - 4 \mathrm { i } z ^ { 2 } + q z - ( 4 - 2 \mathrm { i } ) = 0$$ where \(q\) is a complex number, has roots \(\alpha , \beta\) and \(\gamma\).
  1. Write down the value of:
    1. \(\alpha + \beta + \gamma\);
    2. \(\alpha \beta \gamma\).
  2. Given that \(\alpha = \beta + \gamma\), show that:
    1. \(\alpha = 2 \mathrm { i }\);
    2. \(\quad \beta \gamma = - ( 1 + 2 \mathrm { i } )\);
    3. \(\quad q = - ( 5 + 2 \mathrm { i } )\).
  3. Show that \(\beta\) and \(\gamma\) are the roots of the equation $$z ^ { 2 } - 2 \mathrm { i } z - ( 1 + 2 \mathrm { i } ) = 0$$
  4. Given that \(\beta\) is real, find \(\beta\) and \(\gamma\).
AQA FP2 2006 June Q6
6
  1. The function f is given by $$\mathrm { f } ( n ) = 15 ^ { n } - 8 ^ { n - 2 }$$ Express $$\mathrm { f } ( n + 1 ) - 8 \mathrm { f } ( n )$$ in the form \(k \times 15 ^ { n }\).
  2. Prove by induction that \(15 ^ { n } - 8 ^ { n - 2 }\) is a multiple of 7 for all integers \(n \geqslant 2\).
AQA FP2 2006 June Q7
7
  1. Find the six roots of the equation \(z ^ { 6 } = 1\), giving your answers in the form \(\mathrm { e } ^ { \mathrm { i } \phi }\), where \(- \pi < \phi \leqslant \pi\).
  2. It is given that \(w = \mathrm { e } ^ { \mathrm { i } \theta }\), where \(\theta \neq n \pi\).
    1. Show that \(\frac { w ^ { 2 } - 1 } { w } = 2 \mathrm { i } \sin \theta\).
    2. Show that \(\frac { w } { w ^ { 2 } - 1 } = - \frac { \mathrm { i } } { 2 \sin \theta }\).
    3. Show that \(\frac { 2 \mathrm { i } } { w ^ { 2 } - 1 } = \cot \theta - \mathrm { i }\).
    4. Given that \(z = \cot \theta - \mathrm { i }\), show that \(z + 2 \mathrm { i } = z w ^ { 2 }\).
    1. Explain why the equation $$( z + 2 \mathrm { i } ) ^ { 6 } = z ^ { 6 }$$ has five roots.
    2. Find the five roots of the equation $$( z + 2 \mathrm { i } ) ^ { 6 } = z ^ { 6 }$$ giving your answers in the form \(a + \mathrm { i } b\).
AQA FP2 2007 June Q1
1
  1. Given that \(\mathrm { f } ( r ) = ( r - 1 ) r ^ { 2 }\), show that $$\mathrm { f } ( r + 1 ) - \mathrm { f } ( r ) = r ( 3 r + 1 )$$
  2. Use the method of differences to find the value of $$\sum _ { r = 50 } ^ { 99 } r ( 3 r + 1 )$$ (4 marks)
AQA FP2 2007 June Q2
2 The cubic equation $$z ^ { 3 } + p z ^ { 2 } + 6 z + q = 0$$ has roots \(\alpha , \beta\) and \(\gamma\).
  1. Write down the value of \(\alpha \beta + \beta \gamma + \gamma \alpha\).
  2. Given that \(p\) and \(q\) are real and that \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = - 12\) :
    1. explain why the cubic equation has two non-real roots and one real root;
    2. find the value of \(p\).
  3. One root of the cubic equation is \(- 1 + 3 \mathrm { i }\). Find:
    1. the other two roots;
    2. the value of \(q\).
AQA FP2 2007 June Q3
3 Use De Moivre's Theorem to find the smallest positive angle \(\theta\) for which $$( \cos \theta + \mathrm { i } \sin \theta ) ^ { 15 } = - \mathrm { i }$$ (5 marks)
AQA FP2 2007 June Q4
4
  1. Differentiate \(x \tan ^ { - 1 } x\) with respect to \(x\).
  2. Show that $$\int _ { 0 } ^ { 1 } \tan ^ { - 1 } x \mathrm {~d} x = \frac { \pi } { 4 } - \ln \sqrt { 2 }$$ (5 marks)
AQA FP2 2007 June Q5
5 The sketch shows an Argand diagram. The points \(A\) and \(B\) represent the complex numbers \(z _ { 1 }\) and \(z _ { 2 }\) respectively. The angle \(A O B = 90 ^ { \circ }\) and \(O A = O B\).
\includegraphics[max width=\textwidth, alt={}, center]{847295e3-d806-43b1-8d25-688c5558bfe1-3_533_869_852_632}
  1. Explain why \(z _ { 2 } = \mathrm { i } z _ { 1 }\).
  2. On a single copy of the diagram, draw:
    1. the locus \(L _ { 1 }\) of points satisfying \(\left| z - z _ { 2 } \right| = \left| z - z _ { 1 } \right|\);
    2. the locus \(L _ { 2 }\) of points satisfying \(\arg \left( z - z _ { 2 } \right) = \arg z _ { 1 }\).
  3. Find, in terms of \(z _ { 1 }\), the complex number representing the point of intersection of \(L _ { 1 }\) and \(L _ { 2 }\).
AQA FP2 2007 June Q6
6
  1. Show that $$\left( 1 - \frac { 1 } { ( k + 1 ) ^ { 2 } } \right) \times \frac { k + 1 } { 2 k } = \frac { k + 2 } { 2 ( k + 1 ) }$$
  2. Prove by induction that for all integers \(n \geqslant 2\) $$\left( 1 - \frac { 1 } { 2 ^ { 2 } } \right) \left( 1 - \frac { 1 } { 3 ^ { 2 } } \right) \left( 1 - \frac { 1 } { 4 ^ { 2 } } \right) \ldots \left( 1 - \frac { 1 } { n ^ { 2 } } \right) = \frac { n + 1 } { 2 n }$$