AQA FP2 2009 January — Question 1

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2009
SessionJanuary
TopicHyperbolic functions

1
  1. Use the definitions \(\sinh \theta = \frac { 1 } { 2 } \left( \mathrm { e } ^ { \theta } - \mathrm { e } ^ { - \theta } \right)\) and \(\cosh \theta = \frac { 1 } { 2 } \left( \mathrm { e } ^ { \theta } + \mathrm { e } ^ { - \theta } \right)\) to show that $$1 + 2 \sinh ^ { 2 } \theta = \cosh 2 \theta$$
  2. Solve the equation $$3 \cosh 2 \theta = 2 \sinh \theta + 11$$ giving each of your answers in the form \(\ln p\).