A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Hyperbolic functions
Q1
AQA FP2 2009 January — Question 1
Exam Board
AQA
Module
FP2 (Further Pure Mathematics 2)
Year
2009
Session
January
Topic
Hyperbolic functions
1
Use the definitions \(\sinh \theta = \frac { 1 } { 2 } \left( \mathrm { e } ^ { \theta } - \mathrm { e } ^ { - \theta } \right)\) and \(\cosh \theta = \frac { 1 } { 2 } \left( \mathrm { e } ^ { \theta } + \mathrm { e } ^ { - \theta } \right)\) to show that $$1 + 2 \sinh ^ { 2 } \theta = \cosh 2 \theta$$
Solve the equation $$3 \cosh 2 \theta = 2 \sinh \theta + 11$$ giving each of your answers in the form \(\ln p\).
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8