A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Addition & Double Angle Formulae
Q6
AQA FP2 2008 January — Question 6
Exam Board
AQA
Module
FP2 (Further Pure Mathematics 2)
Year
2008
Session
January
Topic
Addition & Double Angle Formulae
6
By applying De Moivre's theorem to \(( \cos \theta + \mathrm { i } \sin \theta ) ^ { 3 }\), show that $$\cos 3 \theta = \cos ^ { 3 } \theta - 3 \cos \theta \sin ^ { 2 } \theta$$
Find a similar expression for \(\sin 3 \theta\).
Deduce that $$\tan 3 \theta = \frac { \tan ^ { 3 } \theta - 3 \tan \theta } { 3 \tan ^ { 2 } \theta - 1 }$$
Hence show that \(\tan \frac { \pi } { 12 }\) is a root of the cubic equation $$x ^ { 3 } - 3 x ^ { 2 } - 3 x + 1 = 0$$
Find two other values of \(\theta\), where \(0 < \theta < \pi\), for which \(\tan \theta\) is a root of this cubic equation.
Hence show that $$\tan \frac { \pi } { 12 } + \tan \frac { 5 \pi } { 12 } = 4$$
This paper
(7 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7