AQA FP2 2009 January — Question 7

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2009
SessionJanuary
TopicHyperbolic functions

7
  1. Show that $$\frac { \mathrm { d } } { \mathrm {~d} x } \left( \cosh ^ { - 1 } \frac { 1 } { x } \right) = \frac { - 1 } { x \sqrt { 1 - x ^ { 2 } } }$$ (3 marks)
  2. A curve has equation $$y = \sqrt { 1 - x ^ { 2 } } - \cosh ^ { - 1 } \frac { 1 } { x } \quad ( 0 < x < 1 )$$ Show that:
    1. \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { \sqrt { 1 - x ^ { 2 } } } { x }\);
      (4 marks)
    2. the length of the arc of the curve from the point where \(x = \frac { 1 } { 4 }\) to the point where $$x = \frac { 3 } { 4 } \text { is } \ln 3 .$$ (5 marks)