A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Hyperbolic functions
Q5
AQA FP2 2009 January — Question 5
Exam Board
AQA
Module
FP2 (Further Pure Mathematics 2)
Year
2009
Session
January
Topic
Hyperbolic functions
5
Given that \(u = \cosh ^ { 2 } x\), show that \(\frac { \mathrm { d } u } { \mathrm {~d} x } = \sinh 2 x\).
Hence show that $$\int _ { 0 } ^ { 1 } \frac { \sinh 2 x } { 1 + \cosh ^ { 4 } x } \mathrm {~d} x = \tan ^ { - 1 } \left( \cosh ^ { 2 } 1 \right) - \frac { \pi } { 4 }$$
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8