AQA FP2 2009 January — Question 5

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2009
SessionJanuary
TopicHyperbolic functions

5
  1. Given that \(u = \cosh ^ { 2 } x\), show that \(\frac { \mathrm { d } u } { \mathrm {~d} x } = \sinh 2 x\).
  2. Hence show that $$\int _ { 0 } ^ { 1 } \frac { \sinh 2 x } { 1 + \cosh ^ { 4 } x } \mathrm {~d} x = \tan ^ { - 1 } \left( \cosh ^ { 2 } 1 \right) - \frac { \pi } { 4 }$$