AQA FP2 2006 June — Question 5

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2006
SessionJune
TopicRoots of polynomials

5 The cubic equation $$z ^ { 3 } - 4 \mathrm { i } z ^ { 2 } + q z - ( 4 - 2 \mathrm { i } ) = 0$$ where \(q\) is a complex number, has roots \(\alpha , \beta\) and \(\gamma\).
  1. Write down the value of:
    1. \(\alpha + \beta + \gamma\);
    2. \(\alpha \beta \gamma\).
  2. Given that \(\alpha = \beta + \gamma\), show that:
    1. \(\alpha = 2 \mathrm { i }\);
    2. \(\quad \beta \gamma = - ( 1 + 2 \mathrm { i } )\);
    3. \(\quad q = - ( 5 + 2 \mathrm { i } )\).
  3. Show that \(\beta\) and \(\gamma\) are the roots of the equation $$z ^ { 2 } - 2 \mathrm { i } z - ( 1 + 2 \mathrm { i } ) = 0$$
  4. Given that \(\beta\) is real, find \(\beta\) and \(\gamma\).