A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Stats And Pure
Complex Numbers Argand & Loci
Q4
AQA FP2 2006 June — Question 4
Exam Board
AQA
Module
FP2 (Further Pure Mathematics 2)
Year
2006
Session
June
Topic
Complex Numbers Argand & Loci
4
On one Argand diagram, sketch the locus of points satisfying:
\(| z - 3 + 2 \mathrm { i } | = 4\);
\(\quad \arg ( z - 1 ) = - \frac { 1 } { 4 } \pi\).
Indicate on your sketch the set of points satisfying both $$| z - 3 + 2 i | \leqslant 4$$ and $$\arg ( z - 1 ) = - \frac { 1 } { 4 } \pi$$ (1 mark)
This paper
(7 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7