AQA FP2 2009 January — Question 8

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2009
SessionJanuary
TopicComplex numbers 2

8
  1. Show that $$\left( z ^ { 4 } - \mathrm { e } ^ { \mathrm { i } \theta } \right) \left( z ^ { 4 } - \mathrm { e } ^ { - \mathrm { i } \theta } \right) = z ^ { 8 } - 2 z ^ { 4 } \cos \theta + 1$$ (2 marks)
  2. Hence solve the equation $$z ^ { 8 } - z ^ { 4 } + 1 = 0$$ giving your answers in the form \(\mathrm { e } ^ { \mathrm { i } \phi }\), where \(- \pi < \phi \leqslant \pi\).
  3. Indicate the roots on an Argand diagram.