A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Proof by induction
Q6
AQA FP2 2007 June — Question 6
Exam Board
AQA
Module
FP2 (Further Pure Mathematics 2)
Year
2007
Session
June
Topic
Proof by induction
6
Show that $$\left( 1 - \frac { 1 } { ( k + 1 ) ^ { 2 } } \right) \times \frac { k + 1 } { 2 k } = \frac { k + 2 } { 2 ( k + 1 ) }$$
Prove by induction that for all integers \(n \geqslant 2\) $$\left( 1 - \frac { 1 } { 2 ^ { 2 } } \right) \left( 1 - \frac { 1 } { 3 ^ { 2 } } \right) \left( 1 - \frac { 1 } { 4 ^ { 2 } } \right) \ldots \left( 1 - \frac { 1 } { n ^ { 2 } } \right) = \frac { n + 1 } { 2 n }$$
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8