Sequences and series, recurrence and convergence

313 questions · 20 question types identified

Sort by: Question count | Difficulty
Standard summation formulae application

A question is this type if and only if it requires using standard results for Σr, Σr², Σr³ to find a sum like Σ(polynomial in r), often requiring simplification or factorisation.

41 Moderate -0.4
13.1% of questions
Show example »
4 Find \(\sum _ { r = 1 } ^ { n } r ^ { 2 } ( r + 2 )\), giving your answer in a factorised form.
View full question →
Easiest question Easy -1.2 »
11
  1. Evaluate \(\sum _ { r = 1 } ^ { 5 } r ^ { 2 }\).
  2. Show that Euler's approximate formula, as given in line 13, gives the exact value of \(\sum _ { r = 1 } ^ { 5 } r ^ { 2 }\).
View full question →
Hardest question Challenging +1.2 »
13 Prove that Euler's approximate formula, as given in line 13, when applied to \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } \mathrm { r } ^ { 2 }\) gives exactly \(\frac { n ( n + 1 ) ( 2 n + 1 ) } { 6 }\).
View full question →
Method of differences with given identity

A question is this type if and only if it provides or asks to verify an algebraic identity f(r+1) - f(r) = g(r), then uses this to sum Σg(r) by telescoping.

39 Standard +0.4
12.5% of questions
Show example »
1 By expressing \(\frac { 1 } { r + 1 } - \frac { 1 } { r + 2 }\) as a single fraction, find \(\sum _ { r = 1 } ^ { n } \frac { 1 } { ( r + 1 ) ( r + 2 ) }\) in terms of \(n\).
View full question →
Easiest question Moderate -0.5 »
2
  1. Show that \(\frac { 1 } { r + 1 } - \frac { 1 } { r + 2 } = \frac { 1 } { ( r + 1 ) ( r + 2 ) }\).
  2. Hence use the method of differences to find the sum of the series $$\sum _ { r = 1 } ^ { n } \frac { 1 } { ( r + 1 ) ( r + 2 ) }$$
View full question →
Hardest question Challenging +1.2 »
2
  1. Use standard results from the List of formulae (MF19) to find \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } \left( 1 - \mathrm { r } - \mathrm { r } ^ { 2 } \right)\) in terms of \(n\),
    simplifying your answer. simplifying your answer.
  2. Show that $$\frac { 1 - r - r ^ { 2 } } { \left( r ^ { 2 } + 2 r + 2 \right) \left( r ^ { 2 } + 1 \right) } = \frac { r + 1 } { ( r + 1 ) ^ { 2 } + 1 } - \frac { r } { r ^ { 2 } + 1 }$$ and hence use the method of differences to find \(\sum _ { r = 1 } ^ { n } \frac { 1 - r - r ^ { 2 } } { \left( r ^ { 2 } + 2 r + 2 \right) \left( r ^ { 2 } + 1 \right) }\).
  3. Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 1 - r - r ^ { 2 } } { \left( r ^ { 2 } + 2 r + 2 \right) \left( r ^ { 2 } + 1 \right) }\).
View full question →
Infinite series convergence and sum

A question is this type if and only if it asks to deduce the value of Σ(r=1 to ∞) by taking the limit as n→∞ of a finite sum, or to determine convergence conditions.

37 Standard +0.6
11.8% of questions
Show example »
1 Find the sum of the first \(n\) terms of the series $$\frac { 1 } { 1 \times 3 } + \frac { 1 } { 2 \times 4 } + \frac { 1 } { 3 \times 5 } + \ldots$$ and deduce the sum to infinity.
View full question →
Easiest question Standard +0.3 »
9
  1. Show that \(\frac { 1 } { r } - \frac { 1 } { r + 2 } = \frac { 2 } { r ( r + 2 ) }\).
  2. Hence find an expression, in terms of \(n\), for $$\frac { 2 } { 1 \times 3 } + \frac { 2 } { 2 \times 4 } + \ldots + \frac { 2 } { n ( n + 2 ) }$$
  3. Hence find the value of
    (a) \(\sum _ { r = 1 } ^ { \infty } \frac { 2 } { r ( r + 2 ) }\),
    (b) \(\sum _ { r = n + 1 } ^ { \infty } \frac { 2 } { r ( r + 2 ) }\).
View full question →
Hardest question Challenging +1.8 »
  1. Use standard results from the List of Formulae (MF10) to show that $$S _ { N } = \frac { 1 } { 3 } N \left( 25 N ^ { 2 } + 90 N + 83 \right)$$
  2. Use the method of differences to express \(T _ { N }\) in terms of \(N\).
  3. Find \(\lim _ { N \rightarrow \infty } \left( N ^ { - 3 } S _ { N } T _ { N } \right)\).
View full question →
Sum from n+1 to 2n or similar range

A question is this type if and only if it requires finding a sum over a shifted or restricted range like Σ(r=n+1 to 2n) or Σ(r=n to n²) by subtracting two sums.

36 Standard +0.8
11.5% of questions
Show example »
1 Show that \(\sum _ { r = n + 1 } ^ { 2 n } r ^ { 2 } = \frac { 1 } { 6 } n ( 2 n + 1 ) ( 7 n + 1 )\).
View full question →
Easiest question Standard +0.3 »
5. (a) Using the formulae for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\), show that $$\sum _ { r = 1 } ^ { n } ( r + 1 ) ( r + 5 ) = \frac { n } { 6 } ( n + 7 ) ( 2 n + 7 )$$ for all positive integers \(n\).
(b) Hence show that $$\sum _ { r = n + 1 } ^ { 2 n } ( r + 1 ) ( r + 5 ) = \frac { 7 n } { 6 } ( n + 1 ) ( a n + b )$$ where \(a\) and \(b\) are integers to be determined.
VI4V SIHI NI JIIIM ION OCVIAN SIHI NI IHMM I ON OOVAYV SIHI NI JIIIM ION OO
View full question →
Hardest question Challenging +1.8 »
4
  1. Use the method of differences to show that \(\sum _ { r = 1 } ^ { N } \frac { 1 } { ( 3 r + 1 ) ( 3 r - 2 ) } = \frac { 1 } { 3 } - \frac { 1 } { 3 ( 3 N + 1 ) }\).
  2. Find the limit, as \(N \rightarrow \infty\), of \(\sum _ { r = N + 1 } ^ { N ^ { 2 } } \frac { N } { ( 3 r + 1 ) ( 3 r - 2 ) }\).
View full question →
Proving standard summation formulae

A question is this type if and only if it asks to prove a standard result like Σr = n(n+1)/2 or Σr² = n(n+1)(2n+1)/6 using the method of differences with binomial expansions.

17 Standard +0.5
5.4% of questions
Show example »
2
  1. Show that $$( 2 r + 1 ) ^ { 3 } - ( 2 r - 1 ) ^ { 3 } = 24 r ^ { 2 } + 2$$
  2. Hence, using the method of differences, show that $$\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )$$
View full question →
Easiest question Moderate -0.5 »
9
  1. Use the method of differences to show that $$\sum _ { r = 1 } ^ { n } \left\{ ( r + 1 ) ^ { 3 } - r ^ { 3 } \right\} = ( n + 1 ) ^ { 3 } - 1$$
  2. Show that \(( r + 1 ) ^ { 3 } - r ^ { 3 } \equiv 3 r ^ { 2 } + 3 r + 1\).
  3. Use the results in parts (i) and (ii) and the standard result for \(\sum _ { r = 1 } ^ { n } r\) to show that $$3 \sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 2 } n ( n + 1 ) ( 2 n + 1 )$$
View full question →
Hardest question Challenging +1.2 »
3
  1. By considering \(( 2 r + 1 ) ^ { 3 } - ( 2 r - 1 ) ^ { 3 }\), use the method of differences to prove that $$\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )$$ Let \(S _ { n } = 1 ^ { 2 } + 3 \times 2 ^ { 2 } + 3 ^ { 2 } + 3 \times 4 ^ { 2 } + 5 ^ { 2 } + 3 \times 6 ^ { 2 } + \ldots + \left( 2 + ( - 1 ) ^ { n } \right) n ^ { 2 }\).
  2. Show that \(\mathrm { S } _ { 2 \mathrm { n } } = \frac { 1 } { 3 } \mathrm { n } ( 2 \mathrm { n } + 1 ) ( \mathrm { an } + \mathrm { b } )\), where \(a\) and \(b\) are integers to be determined.
  3. State the value of \(\lim _ { n \rightarrow \infty } \frac { S _ { 2 n } } { n ^ { 3 } }\).
View full question →
Finding constants from given sum formula

A question is this type if and only if it provides a summation formula with unknown constants and asks to determine those constants by comparison or substitution.

14 Standard +0.5
4.5% of questions
Show example »
7. Given that, for all positive integers \(n\), $$\sum _ { r = 1 } ^ { n } ( r + a ) ( r + b ) = \frac { 1 } { 6 } n ( 2 n + 11 ) ( n - 1 )$$ where \(a\) and \(b\) are constants and \(a > b\),
  1. find the value of \(a\) and the value of \(b\).
  2. Find the value of $$\sum _ { r = 9 } ^ { 20 } ( r + a ) ( r + b )$$
View full question →
Easiest question Moderate -0.5 »
  1. Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and for \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) to show that, for all positive integers \(n\),
$$\sum _ { r = 1 } ^ { n } r ( r + 3 ) = \frac { n } { a } ( n + 1 ) ( n + b )$$ where \(a\) and \(b\) are integers to be found.
View full question →
Hardest question Challenging +1.8 »
14
  1. Use the method of differences to show that $$S _ { n } = \frac { 5 n ^ { 2 } + a n } { 12 ( n + b ) ( n + c ) }$$ where \(a , b\) and \(c\) are integers.
    Question 14 continues on the next page 14
  2. Show that, for any number \(k\) greater than \(\frac { 12 } { 5 }\), if the difference between \(\frac { 5 } { 12 }\) and \(S _ { n }\) is less than \(\frac { 1 } { k }\), then $$n > \frac { k - 5 + \sqrt { k ^ { 2 } + 1 } } { 2 }$$
View full question →
Iterative formula convergence

A question is this type if and only if it asks to apply an iterative recurrence formula repeatedly to find a limit value α, and possibly find an equation satisfied by α.

14 Standard +0.3
4.5% of questions
Show example »
6 A sequence is defined by $$a _ { n + 1 } = 2 a _ { n } + 3 a _ { n - 1 } \quad \text { with } a _ { 1 } = 1 \text { and } a _ { 2 } = 1 .$$ Using the method on page 5, show that the value to which the ratio of successive terms converges is 3 .
[0pt] [4]
View full question →
Easiest question Moderate -0.8 »
2 The \(n\)th term of a sequence is \(u _ { n }\).
The sequence is defined by $$u _ { n + 1 } = 6 + \frac { 2 } { 5 } u _ { n }$$ The first term of the sequence is given by \(u _ { 1 } = 2\).
  1. Find the value of \(u _ { 2 }\) and the value of \(u _ { 3 }\).
  2. The limit of \(u _ { n }\) as \(n\) tends to infinity is \(L\). Write down an equation for \(L\) and hence find the value of \(L\).
View full question →
Hardest question Challenging +1.8 »
8 A sequence \(\left\{ \mathrm { u } _ { \mathrm { n } } \right\}\) is defined by the recurrence system \(u _ { 1 } = 1\) and \(\mathrm { u } _ { \mathrm { n } + 1 } = \mathrm { a } - \frac { \mathrm { a } ^ { 2 } } { 2 \mathrm { u } _ { \mathrm { n } } }\) for \(n \geqslant 1\), where \(a\) is a positive constant.
Determine with justification the behaviour of the sequence for all possible values of \(a\). \section*{END OF QUESTION PAPER}
View full question →
Recurrence relation solving for closed form

A question is this type if and only if it asks to determine a closed form (explicit formula) for a recurrence relation, typically second-order linear recurrences of the form u(n+2) = au(n+1) + bu(n) + g(n).

11 Challenging +1.1
3.5% of questions
Show example »
  1. Solve the recurrence system
$$\begin{gathered} u _ { 1 } = 1 \quad u _ { 2 } = 4 \\ 9 u _ { n + 2 } - 12 u _ { n + 1 } + 4 u _ { n } = 3 n \end{gathered}$$
View full question →
Easiest question Standard +0.3 »
  1. Determine a closed form for the recurrence system
$$\begin{gathered} u _ { 1 } = 4 \quad u _ { 2 } = 6 \\ u _ { n + 2 } = 6 u _ { n + 1 } - 9 u _ { n } \quad ( n = 1,2,3 , \ldots ) \end{gathered}$$
View full question →
Hardest question Challenging +1.8 »
7 The members of the family of the sequences \(\left\{ u _ { n } \right\}\) satisfy the recurrence relation $$u _ { n + 1 } = 10 u _ { n } - u _ { n - 1 } \text { for } n \geqslant 1$$
  1. Determine the general solution of (*).
  2. The sequences \(\left\{ a _ { n } \right\}\) and \(\left\{ b _ { n } \right\}\) are members of this family of sequences, corresponding to the initial terms \(a _ { 0 } = 1 , a _ { 1 } = 5\) and \(b _ { 0 } = 0 , b _ { 1 } = 2\) respectively.
    (a) Find the next two terms of each sequence.
    (b) Prove that, for all non-negative integers \(n , \left( a _ { n } \right) ^ { 2 } - 6 \left( b _ { n } \right) ^ { 2 } = 1\).
    (c) Determine \(\lim _ { n \rightarrow \infty } \left( \frac { a _ { n } } { b _ { n } } \right)\). \section*{OCR} Oxford Cambridge and RSA
View full question →
Integral bounds for series

A question is this type if and only if it uses rectangles under/over a curve to establish upper and lower bounds for a sum using definite integrals.

11 Challenging +1.3
3.5% of questions
Show example »
  1. By considering the sum of the areas of these rectangles, show that $$\int _ { 0 } ^ { 1 } x ^ { 2 } d x < \frac { 2 n ^ { 2 } + 3 n + 1 } { 6 n ^ { 2 } }$$
  2. Use a similar method to find, in terms of \(n\), a lower bound for \(\int _ { 0 } ^ { 1 } x ^ { 2 } \mathrm {~d} x\).
View full question →
Easiest question Standard +0.8 »
8 \includegraphics[max width=\textwidth, alt={}, center]{b9f29713-bc86-4869-9e54-195208e5e81d-5_579_1363_267_390} The diagram shows the curve with equation \(y = \frac { 1 } { x + 1 }\). A set of \(n\) rectangles of unit width is drawn, starting at \(x = 0\) and ending at \(x = n\), where \(n\) is an integer.
  1. By considering the areas of these rectangles, explain why $$\frac { 1 } { 2 } + \frac { 1 } { 3 } + \ldots + \frac { 1 } { n + 1 } < \ln ( n + 1 ) .$$
  2. By considering the areas of another set of rectangles, show that $$1 + \frac { 1 } { 2 } + \frac { 1 } { 3 } + \ldots + \frac { 1 } { n } > \ln ( n + 1 ) .$$
  3. Hence show that $$\ln ( n + 1 ) + \frac { 1 } { n + 1 } < \sum _ { r = 1 } ^ { n + 1 } \frac { 1 } { r } < \ln ( n + 1 ) + 1$$
  4. State, with a reason, whether \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { r }\) is convergent.
View full question →
Hardest question Challenging +1.8 »
3 \includegraphics[max width=\textwidth, alt={}, center]{e313d6f0-7615-4be5-b13e-2796fd6335e5-04_540_1511_276_274} The diagram shows the curve \(\mathrm { y } = \frac { \mathrm { x } } { 2 \mathrm { x } ^ { 2 } - 1 }\) for \(x \geqslant 1\), together with a set of \(N - 1\) rectangles of unit
width. width.
  1. By considering the sum of the areas of these rectangles, show that $$\sum _ { r = 1 } ^ { N } \frac { r } { 2 r ^ { 2 } - 1 } < \frac { 1 } { 4 } \ln \left( 2 N ^ { 2 } - 1 \right) + 1$$
  2. Use a similar method to find, in terms of \(N\), a lower bound for \(\sum _ { r = 1 } ^ { N } \frac { r } { 2 r ^ { 2 } - 1 }\).
View full question →
Method of differences with exponential/logarithmic terms

A question is this type if and only if it involves summing terms containing exponential functions e^(rx) or logarithms ln(...) using the method of differences.

10 Standard +0.9
3.2% of questions
Show example »
  1. (i) Find the value of
$$\sum _ { r = 4 } ^ { \infty } 20 \times \left( \frac { 1 } { 2 } \right) ^ { r }$$ (3)
(ii) Show that $$\sum _ { n = 1 } ^ { 48 } \log _ { 5 } \left( \frac { n + 2 } { n + 1 } \right) = 2$$
View full question →
Easiest question Standard +0.3 »
1 Given that $$u _ { n } = \mathrm { e } ^ { n x } - \mathrm { e } ^ { ( n + 1 ) x }$$ find \(\sum _ { n = 1 } ^ { N } \| _ { n }\) in terms of \(N\) and \(x\). Hence determine the set of values of \(x\) for which the infinite series $$u _ { 1 } + u _ { 2 } + u _ { 3 } + \ldots$$ is convergent and give the sum to infinity for cases where this exists.
View full question →
Hardest question Challenging +1.2 »
4 Let \(\mathrm { u } _ { \mathrm { r } } = \mathrm { e } ^ { \mathrm { rx } } \left( \mathrm { e } ^ { 2 \mathrm { x } } - 2 \mathrm { e } ^ { \mathrm { x } } + 1 \right)\).
  1. Using the method of differences, or otherwise, find \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } \mathrm { u } _ { \mathrm { r } }\) in terms of \(n\) and \(x\).
  2. Deduce the set of non-zero values of \(x\) for which the infinite series $$u _ { 1 } + u _ { 2 } + u _ { 3 } + \ldots$$ is convergent and give the sum to infinity when this exists.
  3. Using a standard result from the list of formulae (MF19), find \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } \ln \mathrm { u } _ { \mathrm { r } }\) in terms of \(n\) and \(x\).
View full question →
Finding n for given sum value

A question is this type if and only if it provides a target value for a sum and asks to find the value of n or determine when a condition is satisfied.

9 Standard +0.8
2.9% of questions
Show example »
10 Using an algebraic method, determine the least value of \(n\) for which \(\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 2 r - 1 ) ( 2 r + 1 ) } \geqslant 0.49\).
View full question →
Easiest question Standard +0.3 »
  1. In this question use the standard results for summations.
    1. Show that for all positive integers \(n\)
    $$\sum _ { r = 1 } ^ { n } \left( 12 r ^ { 2 } + 2 r - 3 \right) = A n ^ { 3 } + B n ^ { 2 }$$ where \(A\) and \(B\) are integers to be determined.
  2. Hence determine the value of \(n\) for which $$\sum _ { r = 1 } ^ { 2 n } r ^ { 3 } - \sum _ { r = 1 } ^ { n } \left( 12 r ^ { 2 } + 2 r - 3 \right) = 270$$
View full question →
Hardest question Challenging +1.2 »
4 The sequence \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is such that, for all positive integers \(n\), $$a _ { n } = \frac { n + 5 } { \sqrt { } \left( n ^ { 2 } - n + 1 \right) } - \frac { n + 6 } { \sqrt { } \left( n ^ { 2 } + n + 1 \right) }$$ The sum \(\sum _ { n = 1 } ^ { N } a _ { n }\) is denoted by \(S _ { N }\).
  1. Find the value of \(S _ { 30 }\) correct to 3 decimal places.
  2. Find the least value of \(N\) for which \(S _ { N } > 4.9\).
View full question →
Applied recurrence modeling

A question is this type if and only if it involves setting up and analyzing a recurrence relation from a real-world context (population, finance, lily pads, stairs, etc.) and may involve finding terms, limits, or conditions.

8 Standard +0.8
2.6% of questions
Show example »
  1. In a model for the number of subscribers to a new social media channel it is assumed that
  • each week \(20 \%\) of the subscribers at the start of the week cancel their subscriptions
  • between the start and end of week \(n\) the channel gains \(20 n\) new subscribers
Given that at the end of week 1 there were 25 subscribers,
  1. explain why the number of subscribers at the end of week \(n , U _ { n }\), is modelled by the recurrence relation $$U _ { 1 } = 25 \quad U _ { n + 1 } = 0.8 U _ { n } + 20 ( n + 1 ) \quad n = 1,2,3 , \ldots$$
  2. Prove by induction that for \(n \geqslant 1\) $$U _ { n } = 325 \left( \frac { 4 } { 5 } \right) ^ { n - 1 } + 100 n - 400$$ Given that 6 months after starting the channel there were approximately 1800 subscribers,
  3. evaluate the model in the light of this information.
View full question →
Simple recurrence evaluation

A question is this type if and only if it defines a simple first-order recurrence relation u(n+1) = f(u(n)) with explicit formula and asks to find specific terms or sum the sequence, without requiring solving for closed form or analyzing convergence.

6 Moderate -0.5
1.9% of questions
Show example »
7. A sequence is defined by $$\begin{aligned} u _ { 1 } & = 3 \\ u _ { n + 1 } & = 2 - \frac { 4 } { u _ { n } } , \quad n \geqslant 1 \end{aligned}$$ Find the exact values of
  1. \(u _ { 2 } , u _ { 3 }\) and \(u _ { 4 }\)
  2. \(u _ { 61 }\)
  3. \(\sum _ { i = 1 } ^ { 99 } u _ { i }\) [0pt] [BLANK PAGE]
View full question →
Factorial or product method of differences

A question is this type if and only if it involves summing terms with factorials r! or products like r(r+1)(r+2) using the method of differences.

6 Standard +0.8
1.9% of questions
Show example »
1 Let \(\mathrm { f } ( r ) = r ! ( r - 1 )\). Simplify \(\mathrm { f } ( r + 1 ) - \mathrm { f } ( r )\) and hence find \(\sum _ { r = n + 1 } ^ { 2 n } r ! \left( r ^ { 2 } + 1 \right)\).
View full question →
Alternating series summation

A question is this type if and only if it involves summing a series with alternating signs like Σ(-1)^r f(r) or separating odd and even terms.

6 Challenging +1.0
1.9% of questions
Show example »
1 Find \(2 ^ { 2 } + 4 ^ { 2 } + \ldots + ( 2 n ) ^ { 2 }\). Hence find \(1 ^ { 2 } - 2 ^ { 2 } + 3 ^ { 2 } - 4 ^ { 2 } + \ldots - ( 2 n ) ^ { 2 }\), simplifying your answer.
View full question →
Partial fractions then method of differences

A question is this type if and only if it requires expressing a rational function in partial fractions, then using the method of differences to find a sum from r=1 to n or to infinity.

6 Standard +0.4
1.9% of questions
Show example »
5
  1. Express \(\frac { 2 } { ( r + 1 ) ( r + 3 ) }\) in partial fractions.
  2. Hence find \(\sum _ { r = 1 } ^ { n } \frac { 1 } { ( r + 1 ) ( r + 3 ) }\), expressing your answer as a single fraction.
View full question →
Trigonometric method of differences

A question is this type if and only if it uses trigonometric identities to create a telescoping sum involving tan, sin, cos, or arctan functions.

5 Challenging +1.1
1.6% of questions
Show example »
1
  1. Show that $$\tan ( r + 1 ) - \tan r = \frac { \sin 1 } { \cos ( r + 1 ) \cos r }$$ Let \(\mathrm { u } _ { \mathrm { r } } = \frac { 1 } { \cos ( \mathrm { r } + 1 ) \cos \mathrm { r } }\).
  2. Use the method of differences to find \(\sum _ { r = 1 } ^ { n } u _ { r }\).
  3. Explain why the infinite series \(u _ { 1 } + u _ { 2 } + u _ { 3 } + \ldots\) does not converge.
View full question →
Geometric series with summation

A question is this type if and only if it combines geometric series (powers of x or fractions) with other summation techniques to find a sum involving r·x^r or similar.

4 Challenging +1.2
1.3% of questions
Show example »
7 Prove that \(\sum _ { r = 1 } ^ { n } \frac { r } { 2 ^ { r - 1 } } = 4 - \frac { n + 2 } { 2 ^ { n - 1 } }\) for all \(n \geqslant 1\).
View full question →
Surd rationalization method of differences

A question is this type if and only if it involves rationalizing expressions with square roots or cube roots to create a telescoping sum.

4 Challenging +1.0
1.3% of questions
Show example »
1 Given that $$u _ { k } = \frac { 1 } { \sqrt { } ( 2 k - 1 ) } - \frac { 1 } { \sqrt { } ( 2 k + 1 ) }$$ express \(\sum _ { k = 13 } ^ { n } u _ { k }\) in terms of \(n\). Deduce the value of \(\sum _ { k = 13 } ^ { \infty } u _ { k }\).
View full question →
Limit of ratio of sums

A question is this type if and only if it asks to find the limit as n→∞ of a ratio of two summations or to compare asymptotic behavior.

2 Challenging +1.0
0.6% of questions
Show example »
4 In this question you must show detailed reasoning.
Determine the smallest value of \(n\) for which \(\frac { 1 ^ { 2 } + 2 ^ { 2 } + \ldots + n ^ { 2 } } { 1 + 2 + \ldots + n } > 341\).
View full question →
Unclassified

Questions not yet assigned to a type.

27
8.6% of questions
Show 27 unclassified »
5 A local hockey league has three divisions. Each team in the league plays in a division for a year. In the following year a team might play in the same division again, or it might move up or down one division. This question is about the progress of one particular team in the league. In 2007 this team will be playing in either Division 1 or Division 2. Because of its present position, the probability that it will be playing in Division 1 is 0.6 , and the probability that it will be playing in Division 2 is 0.4 . The following transition probabilities apply to this team from 2007 onwards.
  • When the team is playing in Division 1, the probability that it will play in Division 2 in the following year is 0.2 .
  • When the team is playing in Division 2, the probability that it will play in Division 1 in the following year is 0.1 , and the probability that it will play in Division 3 in the following year is 0.3 .
  • When the team is playing in Division 3, the probability that it will play in Division 2 in the following year is 0.15 .
This process is modelled as a Markov chain with three states corresponding to the three divisions.
  1. Write down the transition matrix.
  2. Determine in which division the team is most likely to be playing in 2014.
  3. Find the equilibrium probabilities for each division for this team. In 2015 the rules of the league are changed. A team playing in Division 3 might now be dropped from the league in the following year. Once dropped, a team does not play in the league again.
    -The transition probabilities from Divisions 1 and 2 remain the same as before.
    • When the team is playing in Division 3, the probability that it will play in Division 2 in the following year is 0.15 , and the probability that it will be dropped from the league is 0.1 .
    The team plays in Division 2 in 2015.
    The new situation is modelled as a Markov chain with four states: 'Division1', 'Division 2', 'Division 3' and 'Out of league'.
  4. Write down the transition matrix which applies from 2015.
  5. Find the probability that the team is still playing in the league in 2020.
  6. Find the first year for which the probability that the team is out of the league is greater than 0.5 . \section*{ADVANCED GCE UNIT MATHEMATICS (MEI)} 4757/01 \section*{Further Applications of Advanced Mathematics (FP3) } \section*{THURSDAY 14 JUNE 2007} Afternoon
    Time: 1 hour 30 minutes
    Additional materials:
    Answer booklet (8 pages)
    Graph paper
    MEI Examination Formulae and Tables (MF2)
    • Write your name, centre number and candidate number in the spaces provided on the answer booklet.
    • Answer any three questions.
    • You are permitted to use a graphical calculator in this paper.
    • Final answers should be given to a degree of accuracy appropriate to the context.
    • The number of marks is given in brackets [ ] at the end of each question or part question.
    • The total number of marks for this paper is 72.
    • Read each question carefully and make sure you know what you have to do before starting your answer.
    • You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
4
  1. By first expressing \(\frac { 1 } { r ^ { 2 } - 1 }\) in partial fractions, show that $$\sum _ { r = 2 } ^ { n } \frac { 1 } { r ^ { 2 } - 1 } = \frac { 3 } { 4 } - \frac { a n + b } { 2 n ( n + 1 ) }$$ where \(a\) and \(b\) are integers to be found.
  2. Deduce the value of \(\sum _ { r = 2 } ^ { \infty } \frac { 1 } { r ^ { 2 } - 1 }\).
  3. Find the limit, as \(n \rightarrow \infty\), of \(\sum _ { r = n + 1 } ^ { 2 n } \frac { n } { r ^ { 2 } - 1 }\).
2
  1. Use standard results from the List of formulae (MF19) to find \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } \left( 1 - \mathrm { r } - \mathrm { r } ^ { 2 } \right)\) in terms of \(n\),
    simplifying your answer. simplifying your answer.
  2. Show that $$\frac { 1 - r - r ^ { 2 } } { \left( r ^ { 2 } + 2 r + 2 \right) \left( r ^ { 2 } + 1 \right) } = \frac { r + 1 } { ( r + 1 ) ^ { 2 } + 1 } - \frac { r } { r ^ { 2 } + 1 }$$ and hence use the method of differences to find \(\sum _ { r = 1 } ^ { n } \frac { 1 - r - r ^ { 2 } } { \left( r ^ { 2 } + 2 r + 2 \right) \left( r ^ { 2 } + 1 \right) }\).
  3. Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 1 - r - r ^ { 2 } } { \left( r ^ { 2 } + 2 r + 2 \right) \left( r ^ { 2 } + 1 \right) }\).
1 Let \(a\) be a positive constant.
  1. Use the method of differences to find \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } \frac { 1 } { ( \mathrm { ar } + 1 ) ( \mathrm { ar } + \mathrm { a } + 1 ) }\) in terms of \(n\) and \(a\).
  2. Find the value of \(a\) for which \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { ( a r + 1 ) ( a r + a + 1 ) } = \frac { 1 } { 6 }\).
3 The sequence of positive numbers \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is such that \(u _ { 1 } > 4\) and, for \(n \geqslant 1\), $$u _ { n + 1 } = \frac { u _ { n } ^ { 2 } + u _ { n } + 12 } { 2 u _ { n } }$$
  1. By considering \(\mathrm { u } _ { \mathrm { n } + 1 } - 4\), or otherwise, prove by mathematical induction that \(\mathrm { u } _ { \mathrm { n } } > 4\) for all positive integers \(n\).
  2. Show that \(u _ { n + 1 } < u _ { n }\) for \(n \geqslant 1\).
3
  1. Use the method of differences to find \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } \frac { 1 } { ( \mathrm { kr } + 1 ) ( \mathrm { kr } - \mathrm { k } + 1 ) }\) in terms of \(n\) and \(k\), where \(k\) is a positive constant.
  2. Deduce the value of \(\sum _ { \mathrm { r } = 1 } ^ { \infty } \frac { 1 } { ( \mathrm { kr } + 1 ) ( \mathrm { kr } - \mathrm { k } + 1 ) }\).
  3. Find also \(\sum _ { \mathrm { r } = \mathrm { n } } ^ { \mathrm { n } ^ { 2 } } \frac { 1 } { ( \mathrm { kr } + 1 ) ( \mathrm { kr } - \mathrm { k } + 1 ) }\) in terms of \(n\) and \(k\).
3
  1. Use standard results from the list of formulae (MF19) to show that $$\sum _ { r = 1 } ^ { N } r ( r + 1 ) ( 3 r + 4 ) = \frac { 1 } { 12 } N ( N + 1 ) ( N + 2 ) ( 9 N + 19 )$$
  2. Express \(\frac { 3 r + 4 } { r ( r + 1 ) }\) in partial fractions and hence use the method of differences to find $$\sum _ { r = 1 } ^ { N } \frac { 3 r + 4 } { r ( r + 1 ) } \left( \frac { 1 } { 4 } \right) ^ { r + 1 }$$ in terms of \(N\).
  3. Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 3 r + 4 } { r ( r + 1 ) } \left( \frac { 1 } { 4 } \right) ^ { r + 1 }\).
2
  1. Use standard results from the List of Formulae (MF19) to show that $$\sum _ { r = 1 } ^ { n } ( 7 r + 1 ) ( 7 r + 8 ) = a n ^ { 3 } + b n ^ { 2 } + c n$$ where \(a , b\) and \(c\) are constants to be determined.
  2. Use the method of differences to find \(\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 7 r + 1 ) ( 7 r + 8 ) }\) in terms of \(n\).
  3. Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { ( 7 r + 1 ) ( 7 r + 8 ) }\).
3
  1. By considering \(( 2 r + 1 ) ^ { 3 } - ( 2 r - 1 ) ^ { 3 }\), use the method of differences to prove that $$\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )$$ Let \(S _ { n } = 1 ^ { 2 } + 3 \times 2 ^ { 2 } + 3 ^ { 2 } + 3 \times 4 ^ { 2 } + 5 ^ { 2 } + 3 \times 6 ^ { 2 } + \ldots + \left( 2 + ( - 1 ) ^ { n } \right) n ^ { 2 }\).
  2. Show that \(\mathrm { S } _ { 2 \mathrm { n } } = \frac { 1 } { 3 } \mathrm { n } ( 2 \mathrm { n } + 1 ) ( \mathrm { an } + \mathrm { b } )\), where \(a\) and \(b\) are integers to be determined.
  3. State the value of \(\lim _ { n \rightarrow \infty } \frac { S _ { 2 n } } { n ^ { 3 } }\).
1
  1. By considering \(( r + 1 ) ^ { 2 } - r ^ { 2 }\), use the method of differences to prove that $$\sum _ { r = 1 } ^ { n } r = \frac { 1 } { 2 } n ( n + 1 )$$
  2. Given that \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } ( \mathrm { r } + \mathrm { a } ) = \mathrm { n }\), find \(a\) in terms of \(n\).
4 The sum \(S _ { N }\) is defined by \(S _ { N } = \sum _ { n = 1 } ^ { N } n ^ { 5 }\). Using the identity $$\left( n + \frac { 1 } { 2 } \right) ^ { 6 } - \left( n - \frac { 1 } { 2 } \right) ^ { 6 } \equiv 6 n ^ { 5 } + 5 n ^ { 3 } + \frac { 3 } { 8 } n$$ find \(S _ { N }\) in terms of \(N\). [You need not simplify your result.] Hence find \(\lim _ { N \rightarrow \infty } N ^ { - \lambda } S _ { N }\), for each of the two cases
  1. \(\lambda = 6\),
  2. \(\lambda > 6\).
1 Express \(\frac { 1 } { ( 2 r + 1 ) ( 2 r + 3 ) }\) in partial fractions and hence use the method of differences to find $$\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 2 r + 1 ) ( 2 r + 3 ) }$$ Deduce the value of $$\sum _ { r = 1 } ^ { \infty } \frac { 1 } { ( 2 r + 1 ) ( 2 r + 3 ) }$$
5 Use the method of differences to show that \(\sum _ { r = 1 } ^ { N } \frac { 1 } { ( 2 r + 1 ) ( 2 r + 3 ) } = \frac { 1 } { 6 } - \frac { 1 } { 2 ( 2 N + 3 ) }\). Deduce that \(\sum _ { r = N + 1 } ^ { 2 N } \frac { 1 } { ( 2 r + 1 ) ( 2 r + 3 ) } < \frac { 1 } { 8 N }\).
2 Expand and simplify \(( r + 1 ) ^ { 4 } - r ^ { 4 }\). Use the method of differences together with the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) to show that $$\sum _ { r = 1 } ^ { n } r ^ { 3 } = \frac { 1 } { 4 } n ^ { 2 } ( n + 1 ) ^ { 2 }$$
2 Let \(u _ { n } = \frac { 4 \sin \left( n - \frac { 1 } { 2 } \right) \sin \frac { 1 } { 2 } } { \cos ( 2 n - 1 ) + \cos 1 }\).
  1. Using the formulae for \(\cos P \pm \cos Q\) given in the List of Formulae MF10, show that $$u _ { n } = \frac { 1 } { \cos n } - \frac { 1 } { \cos ( n - 1 ) }$$
  2. Use the method of differences to find \(\sum _ { n = 1 } ^ { N } u _ { n }\).
  3. Explain why the infinite series \(u _ { 1 } + u _ { 2 } + u _ { 3 } + \ldots\) does not converge.
5
  1. Show that $$\frac { r + 1 } { r + 2 } - \frac { r } { r + 1 } = \frac { 1 } { ( r + 1 ) ( r + 2 ) }$$
  2. Hence find an expression, in terms of \(n\), for $$\frac { 1 } { 6 } + \frac { 1 } { 12 } + \frac { 1 } { 20 } + \ldots + \frac { 1 } { ( n + 1 ) ( n + 2 ) }$$
  3. Hence write down the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { ( r + 1 ) ( r + 2 ) }\).
1 Given that $$u _ { k } = \frac { 1 } { \sqrt { } ( 2 k - 1 ) } - \frac { 1 } { \sqrt { } ( 2 k + 1 ) }$$ express \(\sum _ { k = 13 } ^ { n } u _ { k }\) in terms of \(n\). Deduce the value of \(\sum _ { k = 13 } ^ { \infty } u _ { k }\).
4 The sequence \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is such that, for all positive integers \(n\), $$a _ { n } = \frac { n + 5 } { \sqrt { } \left( n ^ { 2 } - n + 1 \right) } - \frac { n + 6 } { \sqrt { } \left( n ^ { 2 } + n + 1 \right) }$$ The sum \(\sum _ { n = 1 } ^ { N } a _ { n }\) is denoted by \(S _ { N }\). Find
  1. the value of \(S _ { 30 }\) correct to 3 decimal places,
  2. the least value of \(N\) for which \(S _ { N } > 4.9\).
1 Use the method of differences to find \(\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 2 r ) ^ { 2 } - 1 }\). Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { ( 2 r ) ^ { 2 } - 1 }\).
1 Use the method of differences to find \(\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 2 r ) ^ { 2 } - 1 }\). Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { ( 2 r ) ^ { 2 } - 1 }\).
3 The sequence of positive numbers \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is such that \(u _ { 1 } < 3\) and, for \(n \geqslant 1\), $$u _ { n + 1 } = \frac { 4 u _ { n } + 9 } { u _ { n } + 4 }$$
  1. By considering \(3 - u _ { n + 1 }\), or otherwise, prove by mathematical induction that \(u _ { n } < 3\) for all positive integers \(n\).
  2. Show that \(u _ { n + 1 } > u _ { n }\) for \(n \geqslant 1\).
  1. By considering \(( 2 r + 1 ) ^ { 2 } - ( 2 r - 1 ) ^ { 2 }\), use the method of differences to prove that $$\sum _ { r = 1 } ^ { n } r = \frac { 1 } { 2 } n ( n + 1 )$$
  2. By considering \(( 2 r + 1 ) ^ { 4 } - ( 2 r - 1 ) ^ { 4 }\), use the method of differences and the result given in part (i) to prove that $$\sum _ { r = 1 } ^ { n } r ^ { 3 } = \frac { 1 } { 4 } n ^ { 2 } ( n + 1 ) ^ { 2 }$$ The sums \(S\) and \(T\) are defined as follows: $$\begin{aligned} & S = 1 ^ { 3 } + 2 ^ { 3 } + 3 ^ { 3 } + 4 ^ { 3 } + \ldots + ( 2 N ) ^ { 3 } + ( 2 N + 1 ) ^ { 3 } , \\ & T = 1 ^ { 3 } + 3 ^ { 3 } + 5 ^ { 3 } + 7 ^ { 3 } + \ldots + ( 2 N - 1 ) ^ { 3 } + ( 2 N + 1 ) ^ { 3 } . \end{aligned}$$
  3. Use the result given in part (ii) to show that \(S = ( 2 N + 1 ) ^ { 2 } ( N + 1 ) ^ { 2 }\).
  4. Hence, or otherwise, find an expression in terms of \(N\) for \(T\), factorising your answer as far as possible.
  5. Deduce the value of \(\frac { S } { T }\) as \(N \rightarrow \infty\).
2
  1. Show that \(\frac { 1 } { r + 1 } - \frac { 1 } { r + 2 } = \frac { 1 } { ( r + 1 ) ( r + 2 ) }\).
  2. Hence use the method of differences to find the sum of the series $$\sum _ { r = 1 } ^ { n } \frac { 1 } { ( r + 1 ) ( r + 2 ) }$$
4 Find \(\sum _ { r = 1 } ^ { n } r ^ { 2 } ( r + 2 )\), giving your answer in a factorised form.
10
  1. You are given that $$\frac { 2 } { r ( r + 1 ) ( r + 2 ) } = \frac { 1 } { r } - \frac { 2 } { r + 1 } + \frac { 1 } { r + 2 }$$ Use the method of differences to show that $$\sum _ { r = 1 } ^ { n } \frac { 2 } { r ( r + 1 ) ( r + 2 ) } = \frac { 1 } { 2 } - \frac { 1 } { ( n + 1 ) ( n + 2 ) }$$
  2. Hence find the sum of the infinite series $$\frac { 1 } { 1 \times 2 \times 3 } + \frac { 1 } { 2 \times 3 \times 4 } + \frac { 1 } { 3 \times 4 \times 5 } + \ldots$$ RECOGNISING ACHIEVEMENT \section*{OXFORD CAMBRIDGE AND RSA EXAMINATIONS} \section*{Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education} \section*{MEI STRUCTURED MATHEMATICS} Further Concepts For Advanced Mathematics (FP1)
    Wednesday 18 JANUARY 2006 Afternoon ..... 1 hour 30 minutes
    Additional materials:
    8 page answer booklet
    Graph paper
    MEI Examination Formulae and Tables (MF2) TIME 1 hour 30 minutes
    • Write your name, centre number and candidate number in the spaces provided on the answer booklet.
    • Answer all the questions.
    • You are permitted to use a graphical calculator in this paper.
    • Final answers should be given to a degree of accuracy appropriate to the context.
    • The number of marks is given in brackets [ ] at the end of each question or part question.
    • You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
    • The total number of marks for this paper is 72.
1
  1. Show that $$\frac { 1 } { r ^ { 2 } } - \frac { 1 } { ( r + 1 ) ^ { 2 } } = \frac { 2 r + 1 } { r ^ { 2 } ( r + 1 ) ^ { 2 } }$$
  2. Hence find the sum of the first \(n\) terms of the series $$\frac { 3 } { 1 ^ { 2 } \times 2 ^ { 2 } } + \frac { 5 } { 2 ^ { 2 } \times 3 ^ { 2 } } + \frac { 7 } { 3 ^ { 2 } \times 4 ^ { 2 } } + \ldots$$
4
  1. Prove by induction that $$2 + ( 3 \times 2 ) + \left( 4 \times 2 ^ { 2 } \right) + \ldots + ( n + 1 ) 2 ^ { n - 1 } = n 2 ^ { n }$$ for all integers \(n \geqslant 1\).
  2. Show that $$\sum _ { r = n + 1 } ^ { 2 n } ( r + 1 ) 2 ^ { r - 1 } = n 2 ^ { n } \left( 2 ^ { n + 1 } - 1 \right)$$