A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Sequences and series, recurrence and convergence
Q9
OCR FP1 2006 January — Question 9
Exam Board
OCR
Module
FP1 (Further Pure Mathematics 1)
Year
2006
Session
January
Topic
Sequences and series, recurrence and convergence
9
Show that \(\frac { 1 } { r } - \frac { 1 } { r + 2 } = \frac { 2 } { r ( r + 2 ) }\).
Hence find an expression, in terms of \(n\), for $$\frac { 2 } { 1 \times 3 } + \frac { 2 } { 2 \times 4 } + \ldots + \frac { 2 } { n ( n + 2 ) }$$
Hence find the value of
(a) \(\sum _ { r = 1 } ^ { \infty } \frac { 2 } { r ( r + 2 ) }\),
(b) \(\sum _ { r = n + 1 } ^ { \infty } \frac { 2 } { r ( r + 2 ) }\).
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
3
Q9
Q10