OCR FP1 2006 January — Question 9

Exam BoardOCR
ModuleFP1 (Further Pure Mathematics 1)
Year2006
SessionJanuary
TopicSequences and series, recurrence and convergence

9
  1. Show that \(\frac { 1 } { r } - \frac { 1 } { r + 2 } = \frac { 2 } { r ( r + 2 ) }\).
  2. Hence find an expression, in terms of \(n\), for $$\frac { 2 } { 1 \times 3 } + \frac { 2 } { 2 \times 4 } + \ldots + \frac { 2 } { n ( n + 2 ) }$$
  3. Hence find the value of
    (a) \(\sum _ { r = 1 } ^ { \infty } \frac { 2 } { r ( r + 2 ) }\),
    (b) \(\sum _ { r = n + 1 } ^ { \infty } \frac { 2 } { r ( r + 2 ) }\).