OCR FP1 2006 June — Question 9

Exam BoardOCR
ModuleFP1 (Further Pure Mathematics 1)
Year2006
SessionJune
TopicSequences and series, recurrence and convergence

9
  1. Use the method of differences to show that $$\sum _ { r = 1 } ^ { n } \left\{ ( r + 1 ) ^ { 3 } - r ^ { 3 } \right\} = ( n + 1 ) ^ { 3 } - 1$$
  2. Show that \(( r + 1 ) ^ { 3 } - r ^ { 3 } \equiv 3 r ^ { 2 } + 3 r + 1\).
  3. Use the results in parts (i) and (ii) and the standard result for \(\sum _ { r = 1 } ^ { n } r\) to show that $$3 \sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 2 } n ( n + 1 ) ( 2 n + 1 )$$