| Exam Board | CAIE |
|---|---|
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2010 |
| Session | June |
| Paper | Download PDF ↗ |
| Mark scheme | Download PDF ↗ |
| Topic | Sequences and series, recurrence and convergence |
4 The sum $S _ { N }$ is defined by $S _ { N } = \sum _ { n = 1 } ^ { N } n ^ { 5 }$. Using the identity
$$\left( n + \frac { 1 } { 2 } \right) ^ { 6 } - \left( n - \frac { 1 } { 2 } \right) ^ { 6 } \equiv 6 n ^ { 5 } + 5 n ^ { 3 } + \frac { 3 } { 8 } n$$
find $S _ { N }$ in terms of $N$. [You need not simplify your result.]
Hence find $\lim _ { N \rightarrow \infty } N ^ { - \lambda } S _ { N }$, for each of the two cases\\
(i) $\lambda = 6$,\\
(ii) $\lambda > 6$.
\hfill \mbox{\textit{CAIE FP1 2010 Q4}}