A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Sequences and series, recurrence and convergence
Q1
CAIE Further Paper 1 2021 June — Question 1
Exam Board
CAIE
Module
Further Paper 1 (Further Paper 1)
Year
2021
Session
June
Topic
Sequences and series, recurrence and convergence
1
Show that $$\tan ( r + 1 ) - \tan r = \frac { \sin 1 } { \cos ( r + 1 ) \cos r }$$ Let \(\mathrm { u } _ { \mathrm { r } } = \frac { 1 } { \cos ( \mathrm { r } + 1 ) \cos \mathrm { r } }\).
Use the method of differences to find \(\sum _ { r = 1 } ^ { n } u _ { r }\).
Explain why the infinite series \(u _ { 1 } + u _ { 2 } + u _ { 3 } + \ldots\) does not converge.
This paper
(7 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7