CAIE FP1 2018 November — Question 3

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2018
SessionNovember
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicSequences and series, recurrence and convergence

3 The sequence of positive numbers \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is such that \(u _ { 1 } < 3\) and, for \(n \geqslant 1\), $$u _ { n + 1 } = \frac { 4 u _ { n } + 9 } { u _ { n } + 4 }$$
  1. By considering \(3 - u _ { n + 1 }\), or otherwise, prove by mathematical induction that \(u _ { n } < 3\) for all positive integers \(n\).
  2. Show that \(u _ { n + 1 } > u _ { n }\) for \(n \geqslant 1\).

3 The sequence of positive numbers $u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots$ is such that $u _ { 1 } < 3$ and, for $n \geqslant 1$,

$$u _ { n + 1 } = \frac { 4 u _ { n } + 9 } { u _ { n } + 4 }$$

(i) By considering $3 - u _ { n + 1 }$, or otherwise, prove by mathematical induction that $u _ { n } < 3$ for all positive integers $n$.\\

(ii) Show that $u _ { n + 1 } > u _ { n }$ for $n \geqslant 1$.\\

\hfill \mbox{\textit{CAIE FP1 2018 Q3}}