Simple recurrence evaluation

A question is this type if and only if it defines a simple first-order recurrence relation u(n+1) = f(u(n)) with explicit formula and asks to find specific terms or sum the sequence, without requiring solving for closed form or analyzing convergence.

6 questions · Moderate -0.5

Sort by: Default | Easiest first | Hardest first
Edexcel P2 2019 June Q1
4 marks Easy -1.3
  1. A sequence \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is defined by
$$\begin{aligned} a _ { n + 1 } & = 4 - a _ { n } \\ a _ { 1 } & = 3 \end{aligned}$$ Find the value of
    1. \(a _ { 2 }\)
    2. \(a _ { 107 }\)
  1. \(\sum _ { n = 1 } ^ { 200 } \left( 2 a _ { n } - 1 \right)\)
Edexcel P2 2023 October Q2
5 marks Moderate -0.3
  1. A sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by
$$\begin{gathered} u _ { 1 } = 3 \\ u _ { n + 1 } = 2 - \frac { 4 } { u _ { n } } \end{gathered}$$
  1. Find the value of \(u _ { 2 }\), the value of \(u _ { 3 }\) and the value of \(u _ { 4 }\)
  2. Find the value of $$\sum _ { r = 1 } ^ { 100 } u _ { r }$$
Edexcel Paper 2 2018 June Q4
7 marks Moderate -0.3
  1. (i) Show that \(\sum _ { r = 1 } ^ { 16 } \left( 3 + 5 r + 2 ^ { r } \right) = 131798\) (ii) A sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by
$$u _ { n + 1 } = \frac { 1 } { u _ { n } } , \quad u _ { 1 } = \frac { 2 } { 3 }$$ Find the exact value of \(\sum _ { r = 1 } ^ { 100 } u _ { r }\)
OCR MEI Paper 3 2022 June Q3
4 marks Moderate -0.3
3 An infinite sequence \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is defined by \(a _ { \mathrm { n } } = \frac { \mathrm { n } } { \mathrm { n } + 1 }\), for all positive integers \(n\).
  1. Find the limit of the sequence.
  2. Prove that this is an increasing sequence.
OCR Further Additional Pure AS 2018 March Q3
5 marks Standard +0.3
3 In this question you must show detailed reasoning.
  1. The sequence \(\left\{ A _ { n } \right\}\) is given by \(A _ { 1 } = \sqrt { 3 }\) and \(A _ { n + 1 } = ( \sqrt { 3 } + 1 ) A _ { n }\) for \(n \geqslant 1\). Find an expression for \(A _ { n }\) in terms of \(n\).
  2. The sequence \(\left\{ B _ { n } \right\}\) is given by the formula $$B _ { n } = \frac { 1 } { \sqrt { 3 } } \left( ( \sqrt { 3 } + 1 ) ^ { n } - ( \sqrt { 3 } - 1 ) ^ { n } \right) \text { for } n \geqslant 1 .$$ Explain why \(B _ { n } \rightarrow \frac { 1 } { \sqrt { 3 } } ( \sqrt { 3 } + 1 ) ^ { n }\) as \(n \rightarrow \infty\).
  3. The sequence \(\left\{ C _ { n } \right\}\) converges and is defined by \(C _ { n } = \frac { A _ { n } } { B _ { n } }\) for \(n \geqslant 1\). Identify the limit of \(C n\) as \(n \rightarrow \infty\).
AQA Paper 1 2020 June Q7
4 marks Moderate -0.8
7 Consecutive terms of a sequence are related by $$u _ { n + 1 } = 3 - \left( u _ { n } \right) ^ { 2 }$$ 7
  1. In the case that \(u _ { 1 } = 2\) 7
    1. Find \(u _ { 3 }\) 7
  2. (ii) Find \(u _ { 50 }\) 7
  3. State a different value for \(u _ { 1 }\) which gives the same value for \(u _ { 50 }\) as found in part (a)(ii).