Proving standard summation formulae

A question is this type if and only if it asks to prove a standard result like Σr = n(n+1)/2 or Σr² = n(n+1)(2n+1)/6 using the method of differences with binomial expansions.

17 questions · Standard +0.5

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 1 2022 November Q3
9 marks Challenging +1.2
3
  1. By considering \(( 2 r + 1 ) ^ { 3 } - ( 2 r - 1 ) ^ { 3 }\), use the method of differences to prove that $$\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )$$ Let \(S _ { n } = 1 ^ { 2 } + 3 \times 2 ^ { 2 } + 3 ^ { 2 } + 3 \times 4 ^ { 2 } + 5 ^ { 2 } + 3 \times 6 ^ { 2 } + \ldots + \left( 2 + ( - 1 ) ^ { n } \right) n ^ { 2 }\).
  2. Show that \(\mathrm { S } _ { 2 \mathrm { n } } = \frac { 1 } { 3 } \mathrm { n } ( 2 \mathrm { n } + 1 ) ( \mathrm { an } + \mathrm { b } )\), where \(a\) and \(b\) are integers to be determined.
  3. State the value of \(\lim _ { n \rightarrow \infty } \frac { S _ { 2 n } } { n ^ { 3 } }\).
CAIE Further Paper 1 2023 November Q1
7 marks Standard +0.3
1
  1. By considering \(( r + 1 ) ^ { 2 } - r ^ { 2 }\), use the method of differences to prove that $$\sum _ { r = 1 } ^ { n } r = \frac { 1 } { 2 } n ( n + 1 )$$
  2. Given that \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } ( \mathrm { r } + \mathrm { a } ) = \mathrm { n }\), find \(a\) in terms of \(n\).
Edexcel F2 2017 June Q3
6 marks Standard +0.3
3. (a) Show that \(r ^ { 3 } - ( r - 1 ) ^ { 3 } \equiv 3 r ^ { 2 } - 3 r + 1\) (b) Hence prove by the method of differences that, for \(n \in \mathbb { Z } ^ { + }\) $$\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { n ( n + 1 ) ( 2 n + 1 ) } { 6 }$$ [You may use \(\sum _ { r = 1 } ^ { n } r = \frac { n ( n + 1 ) } { 2 }\) without proof.]
Edexcel FP2 2004 June Q1
8 marks Standard +0.3
  1. Show that \(( r + 1 ) ^ { 3 } - ( r - 1 ) ^ { 3 } \equiv A r ^ { 2 } + B\), where \(A\) and \(B\) are constants to be found.
  2. Prove by the method of differences that \(\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 ) , n > 1\).
    (6)(Total 8 marks)
Edexcel FP2 2006 June Q2
10 marks Standard +0.3
2. Given that for all real values of \(r , \quad ( 2 r + 1 ) ^ { 3 } - ( 2 r - 1 ) ^ { 3 } = A r ^ { 2 } + B\), where \(A\) and \(B\) are constants,
  1. find the value of \(A\) and the value of \(B\).
  2. Hence, or otherwise, prove that \(\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )\).
  3. Calculate \(\sum _ { r = 1 } ^ { 40 } ( 3 r - 1 ) ^ { 2 }\).
    (3)(Total 10 marks)
Edexcel FP2 2011 June Q4
9 marks Standard +0.8
4. Given that $$( 2 r + 1 ) ^ { 3 } = A r ^ { 3 } + B r ^ { 2 } + C r + 1 ,$$
  1. find the values of the constants \(A , B\) and \(C\).
  2. Show that $$( 2 r + 1 ) ^ { 3 } - ( 2 r - 1 ) ^ { 3 } = 24 r ^ { 2 } + 2$$
  3. Using the result in part (b) and the method of differences, show that $$\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )$$
Edexcel FP2 2015 June Q4
7 marks Standard +0.8
4. (a) Show that $$r ^ { 2 } ( r + 1 ) ^ { 2 } - ( r - 1 ) ^ { 2 } r ^ { 2 } \equiv 4 r ^ { 3 }$$ Given that \(\sum _ { r = 1 } ^ { n } r = \frac { 1 } { 2 } n ( n + 1 )\) (b) use the identity in (a) and the method of differences to show that $$\left( 1 ^ { 3 } + 2 ^ { 3 } + 3 ^ { 3 } + \ldots + n ^ { 3 } \right) = ( 1 + 2 + 3 + \ldots + n ) ^ { 2 }$$
Edexcel F2 2021 October Q9
9 marks Standard +0.8
  1. (a) Show that
$$n ^ { 5 } - ( n - 1 ) ^ { 5 } \equiv 5 n ^ { 4 } - 10 n ^ { 3 } + 10 n ^ { 2 } - 5 n + 1$$ (b) Hence, using the method of differences, show that for all integer values of \(n\), $$\sum _ { r = 1 } ^ { n } r ^ { 4 } = \frac { 1 } { 30 } n ( n + 1 ) ( 2 n + 1 ) \left( a n ^ { 2 } + b n + c \right)$$ where \(a\), \(b\) and \(c\) are integers to be determined.
OCR FP1 2006 June Q9
10 marks Moderate -0.5
9
  1. Use the method of differences to show that $$\sum _ { r = 1 } ^ { n } \left\{ ( r + 1 ) ^ { 3 } - r ^ { 3 } \right\} = ( n + 1 ) ^ { 3 } - 1$$
  2. Show that \(( r + 1 ) ^ { 3 } - r ^ { 3 } \equiv 3 r ^ { 2 } + 3 r + 1\).
  3. Use the results in parts (i) and (ii) and the standard result for \(\sum _ { r = 1 } ^ { n } r\) to show that $$3 \sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 2 } n ( n + 1 ) ( 2 n + 1 )$$
OCR MEI FP1 2006 June Q9
13 marks Standard +0.3
9
  1. Show that \(r ( r + 1 ) ( r + 2 ) - ( r - 1 ) r ( r + 1 ) \equiv 3 r ( r + 1 )\).
  2. Hence use the method of differences to find an expression for \(\sum _ { r = 1 } ^ { n } r ( r + 1 )\).
  3. Show that you can obtain the same expression for \(\sum _ { r = 1 } ^ { n } r ( r + 1 )\) using the standard formulae for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\).
OCR FP1 2009 June Q7
10 marks Moderate -0.3
7
  1. Use the method of differences to show that $$\sum _ { r = 1 } ^ { n } \left\{ ( r + 1 ) ^ { 4 } - r ^ { 4 } \right\} = ( n + 1 ) ^ { 4 } - 1$$
  2. Show that \(( r + 1 ) ^ { 4 } - r ^ { 4 } \equiv 4 r ^ { 3 } + 6 r ^ { 2 } + 4 r + 1\).
  3. Hence show that $$4 \sum _ { r = 1 } ^ { n } r ^ { 3 } = n ^ { 2 } ( n + 1 ) ^ { 2 }$$
CAIE FP1 2014 June Q2
5 marks Standard +0.8
2 Expand and simplify \(( r + 1 ) ^ { 4 } - r ^ { 4 }\). Use the method of differences together with the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) to show that $$\sum _ { r = 1 } ^ { n } r ^ { 3 } = \frac { 1 } { 4 } n ^ { 2 } ( n + 1 ) ^ { 2 }$$
CAIE FP1 2012 November Q4
8 marks Standard +0.8
4 Let \(\mathrm { f } ( r ) = r ( r + 1 ) ( r + 2 )\). Show that $$\mathrm { f } ( r ) - \mathrm { f } ( r - 1 ) = 3 r ( r + 1 )$$ Hence show that \(\sum _ { r = 1 } ^ { n } r ( r + 1 ) = \frac { 1 } { 3 } n ( n + 1 ) ( n + 2 )\). Using the standard result for \(\sum _ { r = 1 } ^ { n } r\), deduce that \(\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )\). Find the sum of the series $$1 ^ { 2 } + 2 \times 2 ^ { 2 } + 3 ^ { 2 } + 2 \times 4 ^ { 2 } + 5 ^ { 2 } + 2 \times 6 ^ { 2 } + \ldots + 2 ( n - 1 ) ^ { 2 } + n ^ { 2 }$$ where \(n\) is odd.
CAIE FP1 2018 November Q11 EITHER
Standard +0.8
  1. By considering \(( 2 r + 1 ) ^ { 2 } - ( 2 r - 1 ) ^ { 2 }\), use the method of differences to prove that $$\sum _ { r = 1 } ^ { n } r = \frac { 1 } { 2 } n ( n + 1 )$$
  2. By considering \(( 2 r + 1 ) ^ { 4 } - ( 2 r - 1 ) ^ { 4 }\), use the method of differences and the result given in part (i) to prove that $$\sum _ { r = 1 } ^ { n } r ^ { 3 } = \frac { 1 } { 4 } n ^ { 2 } ( n + 1 ) ^ { 2 }$$ The sums \(S\) and \(T\) are defined as follows: $$\begin{aligned} & S = 1 ^ { 3 } + 2 ^ { 3 } + 3 ^ { 3 } + 4 ^ { 3 } + \ldots + ( 2 N ) ^ { 3 } + ( 2 N + 1 ) ^ { 3 } , \\ & T = 1 ^ { 3 } + 3 ^ { 3 } + 5 ^ { 3 } + 7 ^ { 3 } + \ldots + ( 2 N - 1 ) ^ { 3 } + ( 2 N + 1 ) ^ { 3 } . \end{aligned}$$
  3. Use the result given in part (ii) to show that \(S = ( 2 N + 1 ) ^ { 2 } ( N + 1 ) ^ { 2 }\).
  4. Hence, or otherwise, find an expression in terms of \(N\) for \(T\), factorising your answer as far as possible.
  5. Deduce the value of \(\frac { S } { T }\) as \(N \rightarrow \infty\).
OCR MEI Further Pure Core 2022 June Q1
7 marks Standard +0.3
1
  1. By considering \(( r + 1 ) ^ { 3 } - r ^ { 3 }\), find \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } \left( 3 \mathrm { r } ^ { 2 } + 3 \mathrm { r } + 1 \right)\).
  2. Use this result to find \(\sum _ { r = 1 } ^ { n } r ( r + 1 )\), expressing your answer in fully factorised form.
AQA FP2 2008 January Q2
9 marks Standard +0.8
2
  1. Show that $$( 2 r + 1 ) ^ { 3 } - ( 2 r - 1 ) ^ { 3 } = 24 r ^ { 2 } + 2$$
  2. Hence, using the method of differences, show that $$\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )$$
AQA Further AS Paper 1 2020 June Q5
4 marks Standard +0.8
5
  1. Show that $$r ^ { 2 } ( r + 1 ) ^ { 2 } - ( r - 1 ) ^ { 2 } r ^ { 2 } = p r ^ { 3 }$$ where \(p\) is an integer to be found.
    [0pt] [1 mark]
    5
  2. Hence use the method of differences to show that $$\sum _ { r = 1 } ^ { n } r ^ { 3 } = \frac { 1 } { 4 } n ^ { 2 } ( n + 1 ) ^ { 2 }$$