| Exam Board | CAIE |
|---|---|
| Module | Further Paper 1 (Further Paper 1) |
| Year | 2023 |
| Session | November |
| Paper | Download PDF ↗ |
| Mark scheme | Download PDF ↗ |
| Topic | Sequences and series, recurrence and convergence |
1 (a) By considering $( r + 1 ) ^ { 2 } - r ^ { 2 }$, use the method of differences to prove that
$$\sum _ { r = 1 } ^ { n } r = \frac { 1 } { 2 } n ( n + 1 )$$
(b) Given that $\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } ( \mathrm { r } + \mathrm { a } ) = \mathrm { n }$, find $a$ in terms of $n$.\\
\hfill \mbox{\textit{CAIE Further Paper 1 2023 Q1}}