Finding constants from given sum formula

A question is this type if and only if it provides a summation formula with unknown constants and asks to determine those constants by comparison or substitution.

14 questions · Standard +0.5

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 1 2020 November Q2
8 marks Standard +0.3
2
  1. Use standard results from the List of Formulae (MF19) to show that $$\sum _ { r = 1 } ^ { n } ( 7 r + 1 ) ( 7 r + 8 ) = a n ^ { 3 } + b n ^ { 2 } + c n$$ where \(a , b\) and \(c\) are constants to be determined.
  2. Use the method of differences to find \(\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 7 r + 1 ) ( 7 r + 8 ) }\) in terms of \(n\).
  3. Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { ( 7 r + 1 ) ( 7 r + 8 ) }\).
Edexcel F1 2015 January Q7
11 marks Standard +0.8
7. Given that, for all positive integers \(n\), $$\sum _ { r = 1 } ^ { n } ( r + a ) ( r + b ) = \frac { 1 } { 6 } n ( 2 n + 11 ) ( n - 1 )$$ where \(a\) and \(b\) are constants and \(a > b\),
  1. find the value of \(a\) and the value of \(b\).
  2. Find the value of $$\sum _ { r = 9 } ^ { 20 } ( r + a ) ( r + b )$$
Edexcel F1 2016 January Q5
8 marks Standard +0.8
5. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) to show that, for all positive integers \(n\), $$\sum _ { r = 1 } ^ { n } \left( 8 r ^ { 3 } - 3 r \right) = \frac { 1 } { 2 } n ( n + 1 ) ( 2 n + 3 ) ( a n + b )$$ where \(a\) and \(b\) are integers to be found. Given that $$\sum _ { r = 5 } ^ { 10 } \left( 8 r ^ { 3 } - 3 r + k r ^ { 2 } \right) = 22768$$ (b) find the exact value of the constant \(k\).
Edexcel F1 2018 January Q3
8 marks Standard +0.8
  1. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) and \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) to show that, for all positive integers \(n\),
$$\sum _ { r = 1 } ^ { n } r ^ { 2 } ( r + 1 ) = \frac { 1 } { 12 } n ( n + 1 ) ( n + 2 ) ( a n + b )$$ where \(a\) and \(b\) are integers to be determined.
(b) Given that $$\sum _ { r = 5 } ^ { 25 } r ^ { 2 } ( r + 1 ) + \sum _ { r = 1 } ^ { k } 3 ^ { r } = 140543$$ find the value of the integer \(k\).
Edexcel F1 2023 January Q2
6 marks Standard +0.3
  1. In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.
Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) to show that for all positive integers \(n\) $$\sum _ { r = 1 } ^ { n } ( 7 r - 5 ) ^ { 2 } = \frac { n } { 6 } ( 7 n + 1 ) ( A n + B )$$ where \(A\) and \(B\) are integers to be determined.
Edexcel F1 2015 June Q2
5 marks Standard +0.3
  1. Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and for \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) to show that
$$\sum _ { r = 1 } ^ { n } ( 3 r - 2 ) ^ { 2 } = \frac { n } { 2 } \left( a n ^ { 2 } + b n + c \right)$$ where \(a , b\) and \(c\) are integers to be found.
Edexcel F1 2016 June Q1
4 marks Standard +0.3
  1. Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and for \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) to show that, for all positive integers \(n\),
$$\sum _ { r = 1 } ^ { n } r \left( r ^ { 2 } - 3 \right) = \frac { n } { 4 } ( n + a ) ( n + b ) ( n + c )$$ where \(a\), \(b\) and \(c\) are integers to be found.
\includegraphics[max width=\textwidth, alt={}, center]{0b7ef4a1-51bf-4f0c-908a-7caf26a144dc-03_2673_1710_84_116} \includegraphics[max width=\textwidth, alt={}, center]{0b7ef4a1-51bf-4f0c-908a-7caf26a144dc-03_24_21_109_2042}
Edexcel F1 2018 June Q1
4 marks Moderate -0.5
  1. Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and for \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) to show that, for all positive integers \(n\),
$$\sum _ { r = 1 } ^ { n } r ( r + 3 ) = \frac { n } { a } ( n + 1 ) ( n + b )$$ where \(a\) and \(b\) are integers to be found.
Edexcel F1 2023 June Q1
4 marks Standard +0.3
  1. Use the standard results for \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) and \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) to show that, for all positive integers \(n\)
$$\sum _ { r = 1 } ^ { n } r ^ { 2 } ( r + 2 ) = \frac { 1 } { 12 } n ( n + 1 ) \left( a n ^ { 2 } + b n + c \right)$$ where \(a\), \(b\) and \(c\) are integers to be determined.
Edexcel F1 2018 Specimen Q1
4 marks Moderate -0.3
  1. Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and for \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) to show that, for all positive integers \(n\),
$$\sum _ { r = 1 } ^ { n } r \left( r ^ { 2 } - 3 \right) = \frac { n } { 4 } ( n + a ) ( n + b ) ( n + c )$$ where \(a\), \(b\) and \(c\) are integers to be found.
OCR MEI FP1 2016 June Q4
6 marks Standard +0.3
4
  1. Use standard series to show that $$\sum _ { r = 1 } ^ { n } r ^ { 2 } ( 2 r - p ) = \frac { 1 } { 6 } n ( n + 1 ) \left( 3 n ^ { 2 } + ( 3 - 2 p ) n - p \right) ,$$ where \(p\) is a constant.
  2. Given that the coefficients of \(n ^ { 3 }\) and \(n ^ { 4 }\) in the expression for \(\sum _ { r = 1 } ^ { n } r ^ { 2 } ( 2 r - p )\) are equal, find the value of \(p\).
OCR MEI Paper 3 2023 June Q14
3 marks Standard +0.8
14 Show that the expression given in line 33 simplifies to \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } \frac { 1 } { \mathrm { r } } \approx \ln \mathrm { n } + \frac { 13 } { 24 } + \frac { 6 \mathrm { n } + 5 } { 12 \mathrm { n } ( \mathrm { n } + 1 ) }\), as given in line 34.
Edexcel FD2 2024 June Q2
3 marks Standard +0.8
2. The general solution of the first order recurrence relation $$u _ { n + 1 } + a u _ { n } = b n ^ { 2 } + c n + d \quad n \geqslant 0$$ is given by $$u _ { n } = A ( 3 ) ^ { n } + 5 n ^ { 2 } + 1$$ where \(A\) is an arbitrary non-zero constant.
By considering expressions for \(u _ { n + 1 }\) and \(u _ { n }\), find the values of the constants \(a , b , c\) and \(d\).
AQA Further Paper 2 2019 June Q14
12 marks Challenging +1.8
14
  1. Use the method of differences to show that $$S _ { n } = \frac { 5 n ^ { 2 } + a n } { 12 ( n + b ) ( n + c ) }$$ where \(a , b\) and \(c\) are integers.
    Question 14 continues on the next page 14
  2. Show that, for any number \(k\) greater than \(\frac { 12 } { 5 }\), if the difference between \(\frac { 5 } { 12 }\) and \(S _ { n }\) is less than \(\frac { 1 } { k }\), then $$n > \frac { k - 5 + \sqrt { k ^ { 2 } + 1 } } { 2 }$$