| Exam Board | AQA |
|---|---|
| Module | FP2 (Further Pure Mathematics 2) |
| Paper | Download PDF ↗ |
| Mark scheme | Download PDF ↗ |
| Topic | Sequences and series, recurrence and convergence |
4 (a) Prove by induction that
$$2 + ( 3 \times 2 ) + \left( 4 \times 2 ^ { 2 } \right) + \ldots + ( n + 1 ) 2 ^ { n - 1 } = n 2 ^ { n }$$
for all integers $n \geqslant 1$.\\
(b) Show that
$$\sum _ { r = n + 1 } ^ { 2 n } ( r + 1 ) 2 ^ { r - 1 } = n 2 ^ { n } \left( 2 ^ { n + 1 } - 1 \right)$$
\hfill \mbox{\textit{AQA FP2 Q4}}